The second-most beautiful mathematical argument

JIWU JANG

July 4 - 8, 2023

This is a note on a lecture on the back-and-forth arguments, given by Pico Gilman.

Theorem 0.1

Let v_1, v_2, \ldots be a countable set of vertices with probability p, put and edge between v_i and v_j . Let such a graph be G_p . Then, $G_{p'} \cong G_p$ for all 0 < p, p' < 1.

Do the back-and-forth construction, which works because we have countably many vertices. Make an isomorphism. Done.

Theorem 0.2 (Hilbert, 1885)

If (X, <) is a total order, such that

- $\forall x, \exists a, b \text{ such that } a < x < b.$ (Unbounded)
- $\forall x, y \text{ s.t. } x < y, \exists z \text{ such that } x < z < y.$ (Dense)

and X is countable, then $X \cong \mathbb{Q}$.

Proof. Let $f : \mathbb{N} \to X$ and $g : \mathbb{N} \to \mathbb{Q}$ be bijections.

On step i, pick $q_i \in \mathbb{Q}$ such that $\forall j < i, q_i \neq q_j$ and $q_i \neq g(j)$, which also satisfies the following properties:

- $q_i < q_j$ iff f(i) < f(j)
- $q_i < g(j)$ iff $f(i) < h_j$

Doing this countably many times, we get an order-preserving bijection.

Corollary 0.3

Let $\overline{\mathbb{Q}}$ be the set of real algebraics. Then, $\overline{\mathbb{Q}}$ is countable (because $\mathbb{Q}[x]$ is countable), and moreover, there exists an order-preserving bijection between \mathbb{Q} and $\overline{\mathbb{Q}}$.

Properties of \mathbb{R} :

- (i) $\mathbb{Q} \subseteq \mathbb{R}$, and \mathbb{Q} is dense in \mathbb{R} .
- (ii) \mathbb{R} has suprema.

- (iii) If $\{\mathcal{U}_i\}_{i\in\mathcal{I}}$ is a family of disjoint open intervals, then $|\mathcal{I}| \leq |\mathbb{N}|$ (Because every interval has $q \in \mathbb{Q}$ due to \mathbb{Q} being dense in \mathbb{R} .)
- (iv) \mathbb{R} is unbounded and dense.

Remark. Just define \mathbb{R} using Dedekind cuts!

In a total order X, dense and supremum implies infimum.

Proof. Let $A \subseteq X$ such that $y \leq A$. Let $L = \{x \mid x \leq A\}$. Then, $\sup(L) = z$, so $z \leq A$, hence A has an infimum.

Theorem 0.4

ZFC cannot prove that you can or cannot get \mathbb{R} .

Definition 0.5 (Partially ordered set). A poset (T, \leq) is a tree of $\forall t \in T$ such that $s(t) := \{x \in T \mid x \leq t\}$. Then, s(t) is well-ordered by \leq .

Definition 0.6 (Suslin line). A Suslin line is an interval that satisfies the following three condition: tern

- unbounded and dense
- sup and inf exist
- no uncountable disjoint open intervals (CCC)
- not separable

Definition 0.7 (Suslim tree). A Suslim tree is a tree of height ω_1 that satisfies the following three conditions:

- no uncountable antichains
- no uncountable branches
- height is uncountable

IJ α (the smallest uncountable ordinal). where $\omega_1 =$ α countable

Theorem 0.8 A Suslin line \iff a Suslin tree.

Proof. Proof of (\Longrightarrow) . Let (X, <) be a Suslin line. Our tree will be a subset of $\mathcal{O}_X = \{(a,b) \mid a, b \in X\}$ under \subseteq . Let $\mathcal{T}_0 = \emptyset$, and $\mathcal{T}_{i+1} = \mathcal{T}_i \cup \{(a,b) \mid (a,b) \cup U_i\}$ endpoints of the leements of \mathcal{T}_i . Then, $\mathcal{T}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{T}_{\beta}$. Let $\mathcal{T} = \mathcal{T}_{\omega_1}$.

Claim 0.9 — $h(\mathcal{T}) \leq \omega_1$.

Proof. $h(\mathcal{T}) = \bigcup_{t \in I} h(t)$. Suppose $h(t) \ge \omega_1$. Take t = (a, b). Consider $(a_0, b_0) \supseteq (a_1, b_1) \supseteq (a_2, b_2) \supseteq \ldots$ indexed by ω_1 . At least one of a_0, a_1, \ldots or b_0, b_1, \ldots has to be uncountable (since otherwise the entire set is countable as well). WLOG, say a_0, a_1, \ldots was uncountable. But $(a_0, a_1), (a_1, a_2), \ldots$ are disjoint, uncountable, and open, contradiction.

Claim 0.10 — $h(\mathcal{T}) > \alpha \quad \forall \alpha \in \omega_1.$

Proof. Suppose not, that is, $\exists \alpha \in \omega_1$. $\exists \beta \leq \alpha$ such that $|\{t \in \mathcal{T} : h(t) = \beta\}| \geq |\omega_1|$. But then at some point we get an uncountable number of elements for some height, which sucks. There exists a surjection from β to $\gamma < \beta$, but then there must exist at least one element that has uncountable pre-images, which is a contradiction to the condition of a Suslin tree.

Claim 0.11 — There are no uncountable branches.

Proof. $(a_0, b_0) \supseteq (a_1, b_1) \supseteq \dots$ (same idea).

Claim 0.12 — There are no uncountable antichains.

Proof. Dirty.

Proof of (\Leftarrow). Prove \mathcal{T} .

Claim 0.13 — $\exists \mathcal{T}'$ that is Suslin such that $|\operatorname{succ}(t)| = |\omega_1|$ and $\forall t |\{x \mid x > t\}| = |\omega_1|$.

Let X be the set of maximal branches. For each branch B such that B cannot be extended downwards, i.e., $\nexists t$ such that both $\exists b \in B$ s.t. t < b and $\{t\} \cup B$ is a branch. Let $\operatorname{succ}(B) = \{a \in \mathcal{T} \mid a > B, \nexists c : a > c > B\}$. Biject $\operatorname{succ}(B)$ with N. Say $B_1 < B_2$ iff $B = B_1 \cap B_2$ and $\operatorname{succ}(B) \cap B_1 < \operatorname{succ}(B) \cap B_2$. Then, < is total, since it has the entire set and everything satisfies totality (suffices to check transitivity).

Claim 0.14 — Unbounded.

Proof. Let B at level 0 be n. Then, construct B' such that B' is n + 1 at level 0. Then, we naturally have B < B'. For the first time B is nonzero, take B' to be 0 for $\alpha + 1$ levels, and nonzero at $\alpha + 2$ and anything from there.

Claim 0.15 — Dense.

Proof. For $B_1 < B_2$, and say they disagree at α . Then, say $B_1 = n$ at level α and $B_2 = m > n$ at level α . Then, take $B_3 = B_1 \cap B_2$ until levels $\alpha - 1$, then pick n at level α , then pick $> B_1$ above level α . Then, $B_1 < B_3 < B_2$, so we are done.

Jiwu Jang — July 4 – 8, 2023

Claim 0.16 — CCC.

Proof. Let $I_1 = (A_1, B_1)$ and $I_\alpha = (A_\alpha, B_\alpha)$. Pick $x_\alpha \in (A_\alpha, B_\alpha)$. Let $t_\alpha \in X$ such that t_1 is above the last agreement of A_1 and B_1 . Then, $\{t_\alpha\}$ is an uncountable antichain. Take $t_\alpha \leq t_\beta$. Then, $(A_\beta, B_\beta) \ni X_\beta \ni t_\beta \geq t_\alpha$, so $t_\alpha \in X_\beta$. Then, $X_\beta \in (A_\alpha, B_\alpha)$, so they have a common element, contradiction.

Claim 0.17 — Not dense.

Proof. It suffices to show that no uncountable set is dense. Let $Y \subseteq X$ be countable. Then, $\forall y \in Y$, $h(y) \in \omega_1$. We know that $\bigcup_{y \in Y} h(y) = \beta \in \omega_1$. WLOG $B_1 < B_2$. Take B_1, B_2 be maximal branches containing t, which implies $(B_1, B_2) \cap Y = \emptyset$, so Y is not dense.

Theorem 0.18 (Aronzsajin tree) For any infinite cardinal, \nexists Aronzsajin Tree with $h = |\mathbb{N}|$. \exists Aronzsajin Tree with $h - \aleph_1$. The continuum hypothesis gives that $\exists A.T$. with $h = \aleph_2$. The V = L gives that $\exists A.T >$ for every succ cardinal.

Theorem 0.19

A well-ordered set is isomorphic to a unique ordinal number.

Hence, we may define the height of t, denoted as h(t), to be the ordinal that s(t) is order isomorphic to. If T is a tree, then the height of T, denoted as H(T), is

$$\bigcup_{t \in T} h(t)$$

which is uncountable.

Theorem 0.20 (Suslin, 1925) A Suslin tree exists if and only if $\exists X$ satisfying (ii), (iii), and (iv) but not (i).

Proof. We prove (\Longrightarrow) first.

Proof of (\implies). If a Suslin tree exists, then $\exists X$ satisfying (ii), (iii), and (iv) but not (i). Let \mathcal{T} be a Suslin tree, and X be a countable, unbounded, dense set. Then, $X \cong \mathbb{Q}$. Hence, X is dense in Y, which is a "big" total order, contradiction.

Proof of (\Leftarrow). If $\exists X$ satisfying (ii), (iii), and (iv) but not (i), then we may construct a Suslin tree.