The second-most beautiful mathematical argument

Jiwu Jang

July $4-8,2023$

This is a note on a lecture on the back-and-forth arguments, given by Pico Gilman.

Theorem 0.1

Let v_{1}, v_{2}, \ldots be a countable set of vertices with probability p, put and edge between v_{i} and v_{j}. Let such a graph be G_{p}. Then, $G_{p^{\prime}} \cong G_{p}$ for all $0<p, p^{\prime}<1$.

Do the back-and-forth construction, which works because we have countably many vertices. Make an isomorphism. Done.

Theorem 0.2 (Hilbert, 1885)
If $(X,<)$ is a total order, such that

- $\forall x, \exists a, b$ such that $a<x<b$. (Unbounded)
- $\forall x, y$ s.t. $x<y, \exists z$ such that $x<z<y$. (Dense)
and X is countable, then $X \cong \mathbb{Q}$.

Proof. Let $f: \mathbb{N} \rightarrow X$ and $g: \mathbb{N} \rightarrow \mathbb{Q}$ be bijections.
On step i, pick $q_{i} \in \mathbb{Q}$ such that $\forall j<i, q_{i} \neq q_{j}$ and $q_{i} \neq g(j)$, which also satisfies the following properties:

- $q_{i}<q_{j}$ iff $f(i)<f(j)$
- $q_{i}<g(j)$ iff $f(i)<h_{j}$

Doing this countably many times, we get an order-preserving bijection.

Corollary 0.3

Let $\overline{\mathbb{Q}}$ be the set of real algebraics. Then, $\overline{\mathbb{Q}}$ is countable (because $\mathbb{Q}[x]$ is countable), and moreover, there exists an order-preserving bijection between \mathbb{Q} and $\overline{\mathbb{Q}}$.

Properties of \mathbb{R} :
(i) $\mathbb{Q} \subseteq \mathbb{R}$, and \mathbb{Q} is dense in \mathbb{R}.
(ii) \mathbb{R} has suprema.
(iii) If $\left\{\mathcal{U}_{i}\right\}_{i \in \mathcal{I}}$ is a family of disjoint open intervals, then $|\mathcal{I}| \leq|\mathbb{N}|$
(Because every interval has $q \in \mathbb{Q}$ due to \mathbb{Q} being dense in \mathbb{R}.)
(iv) \mathbb{R} is unbounded and dense.

Remark. Just define \mathbb{R} using Dedekind cuts!

In a total order X, dense and supremum implies infimum.
Proof. Let $A \subseteq X$ such that $y \leq A$. Let $L=\{x \mid x \leq A\}$. Then, $\sup (L)=z$, so $z \leq A$, hence A has an infimum.

Theorem 0.4

ZFC cannot prove that you can or cannot get \mathbb{R}.

Definition 0.5 (Partially ordered set). A poset (T, \leq) is a tree of $\forall t \in T$ such that $s(t):=\{x \in T \mid x \leq t\}$. Then, $s(t)$ is well-ordered by \leq.

Definition 0.6 (Suslin line). A Suslin line is an interval that satisfies the following three condition:

- unbounded and dense
- sup and inf exist
- no uncountable disjoint open intervals (CCC)
- not separable

Definition 0.7 (Suslin tree). A Suslin tree is a tree of height ω_{1} that satisfies the following three conditions:

- no uncountable antichains
- no uncountable branches
- height is uncountable
where $\omega_{1}=\bigcup_{\alpha \text { countable }} \alpha$ (the smallest uncountable ordinal).

Theorem 0.8

A Suslin line \Longleftrightarrow a Suslin tree.

Proof. Proof of (\Longrightarrow). Let $(X,<)$ be a Suslin line. Our tree will be a subset of $\mathcal{O}_{X}=\{(a, b) \mid a, b \in X\}$ under \subseteq. Let $\mathcal{T}_{0}=\emptyset$, and $\mathcal{T}_{i+1}=\mathcal{T}_{i} \cup\{(a, b) \mid(a, b) \cup$ endpoints of the leements of $\left.\mathcal{T}_{i}\right\}$. Then, $\mathcal{T}_{\alpha}=\bigcup_{\beta<\alpha} \mathcal{T}_{\beta}$. Let $\mathcal{T}=\mathcal{T}_{\omega_{1}}$.

Claim $0.9-h(\mathcal{T}) \leq \omega_{1}$.

Proof. $h(\mathcal{T})=\bigcup_{t \in I} h(t)$. Suppose $h(t) \geq \omega_{1}$. Take $t=(a, b)$. Consider $\left(a_{0}, b_{0}\right) \supsetneq$ $\left(a_{1}, b_{1}\right) \supsetneq\left(a_{2}, b_{2}\right) \supsetneq \ldots$ indexed by ω_{1}. At least one of a_{0}, a_{1}, \ldots or b_{0}, b_{1}, \ldots has to be uncountable (since otherwise the entire set is countable as well). WLOG, say a_{0}, a_{1}, \ldots was uncountable. But $\left(a_{0}, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots$ are disjoint, uncountable, and open, contradiction.

Claim $0.10-h(\mathcal{T})>\alpha \quad \forall \alpha \in \omega_{1}$.

Proof. Suppose not, that is, $\exists \alpha \in \omega_{1} . \exists \beta \leq \alpha$ such that $|\{t \in \mathcal{T}: h(t)=\beta\}| \geq\left|\omega_{1}\right|$. But then at some point we get an uncountable number of elements for some height, which sucks. There exists a surjection from β to $\gamma<\beta$, but then there must exist at least one element that has uncountable pre-images, which is a contradiction to the condition of a Suslin tree.

Claim 0.11 - There are no uncountable branches.
Proof. $\left(a_{0}, b_{0}\right) \supsetneq\left(a_{1}, b_{1}\right) \supsetneq \ldots$ (same idea).

Claim 0.12 - There are no uncountable antichains.
Proof. Dirty

Proof of (\Longleftarrow). Prove \mathcal{T}.
Claim $0.13-\exists \mathcal{T}^{\prime}$ that is Suslin such that $|\operatorname{succ}(t)|=\left|\omega_{1}\right|$ and $\forall t|\{x \mid x>t\}|=$ $\left|\omega_{1}\right|$.

Let X be the set of maximal branches. For each branch B such that B cannot be extended downwards, i.e., $\exists t$ such that both $\exists b \in B$ s.t. $t<b$ and $\{t\} \cup B$ is a branch. Let $\operatorname{succ}(B)=\{a \in \mathcal{T} \mid a>B$, $\nexists c: a>c>B\}$. Biject $\operatorname{succ}(B)$ with \mathbb{N}. Say $B_{1}<B_{2}$ iff $B=B_{1} \cap B_{2}$ and $\operatorname{succ}(B) \cap B_{1}<\operatorname{succ}(B) \cap B_{2}$. Then, $<$ is total, since it has the entire set and everything satisfies totality (suffices to check transitivity).

Claim 0.14 - Unbounded.
Proof. Let B at level 0 be n. Then, construct B^{\prime} such that B^{\prime} is $n+1$ at level 0 . Then, we naturally have $B<B^{\prime}$. For the first time B is nonzero, take B^{\prime} to be 0 for $\alpha+1$ levels, and nonzero at $\alpha+2$ and anything from there.

Claim 0.15 - Dense.
Proof. For $B_{1}<B_{2}$, and say they disagree at α. Then, say $B_{1}=n$ at level α and $B_{2}=m>n$ at level α. Then, take $B_{3}=B_{1} \cap B_{2}$ until levels $\alpha-1$, then pick n at level α, then pick $>B_{1}$ above level α. Then, $B_{1}<B_{3}<B_{2}$, so we are done.

Claim 0.16 - CCC.

Proof. Let $I_{1}=\left(A_{1}, B_{1}\right)$ and $I_{\alpha}=\left(A_{\alpha}, B_{\alpha}\right)$. Pick $x_{\alpha} \in\left(A_{\alpha}, B_{\alpha}\right)$. Let $t_{\alpha} \in X$ such that t_{1} is above the last agreement of A_{1} and B_{1}. Then, $\left\{t_{\alpha}\right\}$ is an uncountable antichain. Take $t_{\alpha} \leq t_{\beta}$. Then, $\left(A_{\beta}, B_{\beta}\right) \ni X_{\beta} \ni t_{\beta} \geq t_{\alpha}$, so $t_{\alpha} \in X_{\beta}$. Then, $X_{\beta} \in\left(A_{\alpha}, B_{\alpha}\right)$, so they have a common element, contradiction.

Claim 0.17 - Not dense.

Proof. It suffices to show that no uncountable set is dense. Let $Y \subseteq X$ be countable. Then, $\forall y \in Y, h(y) \in \omega_{1}$. We know that $\bigcup_{y \in Y} h(y)=\beta \in \omega_{1}$. WLOG $B_{1}<B_{2}$. Take B_{1}, B_{2} be maximal branches containing t, which implies $\left(B_{1}, B_{2}\right) \cap Y=\emptyset$, so Y is not dense.

Theorem 0.18 (Aronzsajin tree)

For any infinite cardinal, \nexists Aronzsajin Tree with $h=|\mathbb{N}|$.
\exists Aronzsajin Tree with $h-\aleph_{1}$.
The continuum hypothesis gives that $\exists A . T$. with $h=\aleph_{2}$.
The $V=L$ gives that $\exists A . T>$ for every succ cardinal.

Theorem 0.19

A well-ordered set is isomorphic to a unique ordinal number.

Hence, we may define the height of t, denoted as $h(t)$, to be the ordinal that $s(t)$ is order isomorphic to. If T is a tree, then the height of T, denoted as $H(T)$, is

$$
\bigcup_{t \in T} h(t)
$$

which is uncountable.

Theorem 0.20 (Suslin, 1925)
A Suslin tree exists if and only if $\exists X$ satisfying (ii), (iii), and (iv) but not (i).

Proof. We prove (\Longrightarrow) first.
Proof of (\Longrightarrow). If a Suslin tree exists, then $\exists X$ satisfying (ii), (iii), and (iv) but not (i). Let \mathcal{T} be a Suslin tree, and X be a countable, unbounded, dense set. Then, $X \cong \mathbb{Q}$. Hence, X is dense in Y, which is a "big" total order, contradiction.

Proof of (\Longleftarrow). If $\exists X$ satisfying (ii), (iii), and (iv) but not (i), then we may construct a Suslin tree.

