Algebra

JIWU JANG

June 17, 2023

This is a note on a short talk about Noetherian rings, Artinian rings, and short exact sequences (SES), given by Mustafa Nawaz.

Definition 0.1. A ring R is Noetherian if it satisfies the following equivalent conditions of the proposition:

- Every set of ideals $S \neq \emptyset$ in R has a maximal element.
- Every ascending chain of ideals becomes stationary.
- Every ideal in R is finitely generated.

Proof of $(1 \Longrightarrow 2)$. The set $\left(x_{m}\right)_{m=1}^{n}$ has a maximal element, say $\left(x_{n}\right)$.
Proof of $(2 \Longrightarrow 1)$. Assume it's false. Then, there exists a nonempty subset T of Σ (which is the chain of ideals) with no maximal element, we construct inductively.

Proof of $(2 \Longrightarrow 3)$. Huh?
Proof of $(3 \Longrightarrow 2)$. Let $R_{1} \subset R_{2} \subset \ldots$ be an ascending chain of ideals. Then $I=$ $\bigcup_{n=1}^{k} R_{n}$ is a
https://math.stackexchange.com/questions/3912632/checking-the-proof-that-if-every-ideal-of-r-is-finitely-generated-then-r-is

Exercise 0.2. Prove it.

- Every PID is Noetherian
- Every field is Noetherian

Theorem 0.3 (Hilbert's basis theorem (Nullstellensatz))
R is Noetherian $\Longleftrightarrow R\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.

Claim $-R$ is Noetherian $\Longrightarrow R[x]$ is Noetherian.
Proof. Let I be an ideal of $R[x]$. Let I_{k} be the ideal of leading coefficient of degree k elements. Then $a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \in R$.

We have $I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{n}$. But note that I_{k} is finitely generated as an ideal of R, but since R is Noetherian, that chain stabilizes for some n.

Define a finite set of generators of I. Let $S_{0} \subset R[x]$ be a finite set of polynomials that generate I_{0}. Define $S_{1}, S_{2}, \ldots, S_{n}$ similarly.

Let $(S)=\bigcup_{i=0}^{n} S_{i}$, then take $f=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots \in I$ and $g \in(S)$.
If $m<n$, then find $a_{m} \in I_{m}$, and we are done.
If $m \geq n$, then multiply g by x^{m-n}, then kill the x^{m} terms (do $f-g$, where subtraction will also land to be in the ideals), until we get to the zero polynomial (just like the Euclidean algorithm).

Then, by induction (\Longrightarrow) follows.

§1 Short exact sequences

Definition 1.1. A module M consists of an abelian group under addition and multiplication. (Basically vector spaces over a ring.)

That is, $\forall r, s \in R$ and $\forall x, y \in M$,

- $r(x+y)=r x+r y$
- $(r+s)(x)=r x+s x$
- $(r s) x=r(s x)$
- $1 \cdot x=x$

$$
\cdots \xrightarrow{f_{-1}} G_{-1} \xrightarrow{f_{0}} G_{0} \xrightarrow{f_{1}} G_{1} \xrightarrow{f_{2}} \cdots
$$

Figure 1: A depiction of an exact sequence.
Definition 1.2 (Short exact sequences (SES)). Given modules A, B, C, we define a short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$, where $\alpha: A \rightarrow B$ is injective and $\beta: B \rightarrow C$ is surjective, and $\operatorname{Ker} \beta=\operatorname{Im} \alpha$.
Definition 1.3. Define $H_{n}\left(M_{0}\right):=\operatorname{Ker} f_{i} / \operatorname{Im} f_{i-1}$, which is called the $n^{\text {th }}$ homology group. The elements of H_{n} are called homology classes.

Example 1.4

Let R be a ring, and I an ideal. Then $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ is a short exact sequence.

```
Example 1.5
C\congB/Im }=B/\operatorname{Ker}
```


Example 1.6

$0 \rightarrow I \cap J \rightarrow I \oplus J \rightarrow I+J \rightarrow 0$.

Example 1.7

$I \oplus J=\left(i_{1}, j_{1}\right)+\left(i_{2}, j_{2}\right)=\left(i_{1}+i_{2}, j_{1}+j_{2}\right)$ and $I+J=(1)$.

Example 1.8
$0 \rightarrow R / I \cap J \rightarrow R / I \oplus R / J \rightarrow R / I+J \rightarrow 0$.

Corollary 1.9

Chinese remainder theorem. Take $R=\mathbb{Z}, I=\mathbb{Z}_{p}$, and $J=\mathbb{Z}_{q}$, where $\operatorname{gcd}(p, q)=1$, then CRT follows. (Super overkill.)

Proof. $0 \rightarrow \frac{\mathbb{Z}}{p q \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{} / p \mathbb{Z} \oplus \frac{\mathbb{Z}}{} / q \mathbb{Z} \rightarrow \mathbb{Z} / \mathbb{Z} \rightarrow 0$.

Theorem 1.10

Let $0 \rightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \rightarrow 0$ be an exact sequence of modules. Then, M is Noetherian if and only if M^{\prime} and $M^{\prime \prime}$ are. Moreover, M is Artinian if and only if M^{\prime} and $M^{\prime \prime}$ are.

§2 Homology classes

Remark. The motivation comes from physics.

Theorem 2.1 (Formulation of Green's theorem)
For two paths β and β^{\prime}, we have $\int_{\beta} M d x+N d y=\int_{\beta^{\prime}} M d x+N d y$ if and only if $\int_{\gamma} M d x+N d y=0$ for $\gamma:=\beta \oplus\left(-\beta^{\prime}\right)$.

Lemma 2.2

Define an equivalence class $[\beta]$ on β such that two paths are homology equivalent if and only if they have the same path integral.

Definition 2.3. For a ring R and 1 being its multiplicative identity, a left R-module M consists of an abelian group $(M,+)$ and an operation $\cdot: R \times M \rightarrow M$ such that for all r, s in R and x, y in M, we have

1. $r \cdot(x+y)=r \cdot x+r \cdot y$
2. $(r+s) \cdot x=r \cdot x+s \cdot x$
3. $(r s) \cdot x=r \cdot(s \cdot x)$
4. $1 \cdot x=x$.

Definition 2.4 (The universal property). Let M, N be R-modules. A tensor product is an R-module P and a bilinear map $\beta: M \times N \rightarrow P$ such that $M \times N \rightarrow Q$, and we have a unique factorization through an R-module homomorphism f, where $\beta=f \circ \beta_{0}$.

Figure 2: A commutative diagram on a tensor product.

Example 2.5

Take a basis $e_{1}=(1 ; 0)$ and $e_{2}=(0 ; 1)$, then $\left(a e_{1}+c e_{2}\right) \otimes\left(a^{\prime} e_{1}+c^{\prime} e_{2}\right)=a a^{\prime} e_{1} \otimes$ $e_{1}+a c^{\prime} e_{1} \otimes e_{2}+a^{\prime} c e_{2} \otimes e_{1}+c c^{\prime} e_{2} \otimes e_{2}$. Then, $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$ form a basis.

Remark. An interesting property of tensor products is that the eigenvalues of the tensor product are the pairwise products of the eigenvalues of the individual matrices.

- $M \otimes N \cong N \otimes M$
- $(M \otimes N) \oplus P \cong(M \oplus P) \otimes(N \oplus P)$
- $(M \oplus N) \otimes P \cong(M \otimes P) \oplus(N \otimes P)$
- $R \otimes_{R} M \cong M$

