# Algebra

JIWU JANG

June 17, 2023

This is a note on a short talk about Noetherian rings, Artinian rings, and short exact sequences (SES), given by Mustafa Nawaz.

**Definition 0.1.** A ring R is Noetherian if it satisfies the following equivalent conditions of the proposition:

- Every set of ideals  $S \neq \emptyset$  in R has a maximal element.
- Every ascending chain of ideals becomes stationary.
- Every ideal in *R* is finitely generated.

Proof of  $(1 \implies 2)$ . The set  $(x_m)_{m=1}^n$  has a maximal element, say  $(x_n)$ .

*Proof of*  $(2 \implies 1)$ . Assume it's false. Then, there exists a nonempty subset T of  $\Sigma$  (which is the chain of ideals) with no maximal element, we construct inductively.  $\Box$ 

Proof of  $(2 \implies 3)$ . Huh?

Proof of  $(3 \implies 2)$ . Let  $R_1 \subset R_2 \subset \ldots$  be an ascending chain of ideals. Then  $I = \bigcup_{n=1}^{k} R_n$  is a

https://math.stackexchange.com/questions/3912632/checking-the-proof-that-if-every-ideal-of-r-is-finitely-generated-then-r-is  $\hfill\square$ 

Exercise 0.2. Prove it.

- Every PID is Noetherian
- Every field is Noetherian

**Theorem 0.3** (Hilbert's basis theorem (Nullstellensatz)) R is Noetherian  $\iff R[x_1, \ldots, x_n]$  is Noetherian.

**Claim** — R is Noetherian  $\implies R[x]$  is Noetherian.

*Proof.* Let I be an ideal of R[x]. Let  $I_k$  be the ideal of leading coefficient of degree k elements. Then  $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0 \in R$ .

We have  $I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n$ . But note that  $I_k$  is finitely generated as an ideal of R, but since R is Noetherian, that chain stabilizes for some n.

Define a finite set of generators of I. Let  $S_0 \subset R[x]$  be a finite set of polynomials that generate  $I_0$ . Define  $S_1, S_2, \ldots, S_n$  similarly.

Let  $(S) = \bigcup_{i=0}^{n} S_i$ , then take  $f = a_m x^m + a_{m-1} x^{m-1} + \dots \in I$  and  $g \in (S)$ . If m < n, then find  $a_m \in I_m$ , and we are done.

If  $m \ge n$ , then multiply g by  $x^{m-n}$ , then kill the  $x^m$  terms (do f - g, where subtraction will also land to be in the ideals), until we get to the zero polynomial (just like the Euclidean algorithm).

Then, by induction ( $\implies$ ) follows.

## §1 Short exact sequences

**Definition 1.1.** A module M consists of an abelian group under addition and multiplication. (Basically vector spaces over a ring.)

That is,  $\forall r, s \in R \text{ and } \forall x, y \in M$ ,

- r(x+y) = rx + ry
- (r+s)(x) = rx + sx
- (rs)x = r(sx)
- $1 \cdot x = x$



Figure 1: A depiction of an exact sequence.

**Definition 1.2** (Short exact sequences (SES)). Given modules A, B, C, we define a short exact sequence  $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ , where  $\alpha : A \to B$  is injective and  $\beta : B \to C$  is surjective, and Ker  $\beta = \text{Im } \alpha$ .

**Definition 1.3.** Define  $H_n(M_0) := \frac{\operatorname{Ker} f_i}{\operatorname{Im} f_{i-1}}$ , which is called the  $n^{\text{th}}$  homology group. The elements of  $H_n$  are called *homology classes*.

Let R be a ring, and I an ideal. Then  $0 \to I \to R \to R/I \to 0$  is a short exact sequence.

Example 1.5  $C \cong \frac{B}{Im \alpha} = \frac{B}{Ker \beta}$ 

**Example 1.6**  $0 \rightarrow I \cap J \rightarrow I \oplus J \rightarrow I + J \rightarrow 0.$ 

Example 1.7  $I \oplus J = (i_1, j_1) + (i_2, j_2) = (i_1 + i_2, j_1 + j_2)$  and I + J = (1).

Example 1.8  $0 \rightarrow \frac{R_{I \cap J}}{I \cap J} \rightarrow \frac{R_{I \oplus I}}{I \oplus R_{J}} \rightarrow \frac{R_{I + J}}{I \to 0}.$ 

#### **Corollary 1.9**

Chinese remainder theorem. Take  $R = \mathbb{Z}$ ,  $I = \mathbb{Z}_p$ , and  $J = \mathbb{Z}_q$ , where gcd(p,q) = 1, then CRT follows. (Super overkill.)

Proof. 
$$0 \to \mathbb{Z}/_{pq\mathbb{Z}} \to \mathbb{Z}/_{p\mathbb{Z}} \oplus \mathbb{Z}/_{q\mathbb{Z}} \to \mathbb{Z}/_{\mathbb{Z}} \to 0.$$

Theorem 1.10

Let  $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$  be an exact sequence of modules. Then, M is Noetherian if and only if M' and M'' are. Moreover, M is Artinian if and only if M' and M'' are.

## §2 Homology classes

Remark. The motivation comes from physics.

**Theorem 2.1** (Formulation of Green's theorem) For two paths  $\beta$  and  $\beta'$ , we have  $\int_{\beta} M dx + N dy = \int_{\beta'} M dx + N dy$  if and only if  $\int_{\gamma} M dx + N dy = 0$  for  $\gamma := \beta \oplus (-\beta')$ .

#### Lemma 2.2

Define an equivalence class  $[\beta]$  on  $\beta$  such that two paths are homology equivalent if and only if they have the same path integral.

**Definition 2.3.** For a ring R and 1 being its multiplicative identity, a *left* R-module M consists of an abelian group (M, +) and an operation  $\cdot : R \times M \to M$  such that for all r, s in R and x, y in M, we have

- 1.  $r \cdot (x+y) = r \cdot x + r \cdot y$
- 2.  $(r+s) \cdot x = r \cdot x + s \cdot x$
- 3.  $(rs) \cdot x = r \cdot (s \cdot x)$
- 4.  $1 \cdot x = x$ .

**Definition 2.4** (The universal property). Let M, N be R-modules. A tensor product is an R-module P and a bilinear map  $\beta : M \times N \to P$  such that  $M \times N \to Q$ , and we have a unique factorization through an R-module homomorphism f, where  $\beta = f \circ \beta_0$ .



Figure 2: A commutative diagram on a tensor product.

### Example 2.5

Take a basis  $e_1 = (1; 0)$  and  $e_2 = (0; 1)$ , then  $(ae_1 + ce_2) \otimes (a'e_1 + c'e_2) = aa'e_1 \otimes e_1 + ac'e_1 \otimes e_2 + a'ce_2 \otimes e_1 + cc'e_2 \otimes e_2$ . Then,  $e_1 \otimes e_1$ ,  $e_1 \otimes e_2$ ,  $e_2 \otimes e_1$ ,  $e_2 \otimes e_2$  form a basis.

**Remark.** An interesting property of tensor products is that the eigenvalues of the tensor product are the pairwise products of the eigenvalues of the individual matrices.

- $\bullet \ M \otimes N \cong N \otimes M$
- $(M \otimes N) \oplus P \cong (M \oplus P) \otimes (N \oplus P)$
- $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$
- $R \otimes_R M \cong M$