Analysis & Topology

JIWU JANG

June 17, 2023

This is a note on a series of lectures on real analysis and topology, given by Xinkai Wu, Mustafa Nawaz, and Pico Gilman, at the 2023 Ross Mathematics Program at Otterbein College.

§1 Terminology

Definition 1.1. \mathbb{R} is the *completion* of \mathbb{Q} .

Claim — There is a set $\mathbb{R} \supset \mathbb{Q}$ such that \mathbb{R} is *totally ordered* and *complete*.

Definition 1.2. A set is a collection of elements. (Naïve set theoretic definition of a set)

Definition 1.3. If S is a set, we write $x \in S$ to indicate an element x is in the set S.

Definition 1.4. If A, B are sets, then we write $A \subset B$ if $\forall x \in A \implies x \in B$. For $A \supset B$, we take the dual definition.

Definition 1.5. We say A = B if $A \supset B$ and $A \subset B$.

Definition 1.6. Let R be a ring. We define $R \times R = \{(r_1, r_2) \mid r_1, r_2 \in R\}$ and $(r_1, r_2) + (r_3, r_4) = \{(r_1 + r_3, r_2 + r_4) \mid (r_1, r_2), (r_3, r_4) \in R \times R\}.$

Definition 1.7. We have an equivalence relation \sim on \mathbb{Q} : $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, where $(a,b) \sim (c,d) \iff ad - bc = 0$.

Example 1.8 For example, $(1, 2) \sim (3, 6)$.

Exercise 1.9. Check that \sim is indeed an equivalence relation.

Theorem 1.10 \mathbb{Q} is totally ordered with \langle , \rangle , and =.

Definition 1.11. If S is an ordered set, $E \subset S$, and $\exists \alpha \in S$ s.t. $\forall x \in E, x \leq \alpha$, then we say α is an *upper bound* of E. If $\nexists \gamma \in S$ s.t. $\gamma < \alpha$, then we say α is a *least upper bound*. We define the *greatest lower bound* dually.

Definition 1.12. We define a set \mathbb{F} to be a *field* if it is a nontrivial commutative ring such that every nonzero element has an inverse.

Example 1.13 \mathbb{Q} is a field.

Definition 1.14. We define the field of complex numbers $\mathbb{C} := \mathbb{R}[x]/(x^2 + 1)$ where $x^2 + 1$ is an ideal in $\mathbb{R}[x]$, equipped with the operations $+: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ and $\cdot: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ where (a, b) + (c, d) = (a + c, b + d) and $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$.

§2 Point-Set Topology

In \mathbb{R} , a set \mathcal{O} is open if $\forall x \in \mathcal{O}, \exists \delta > 0$ s.t. $(x - \delta, x + \delta) \in \mathcal{O}$. A set \mathcal{F} is closed if $\mathcal{F}^{\complement}$ is open.

Example 2.1

 $\mathbb N$ is closed since it does not have any limit points.

Theorem 2.2

For $\{\mathcal{O}_i\}$, an arbitrary union $\bigcup_i \mathcal{O}_i$ is also open.

Corollary 2.3

For $\{\mathcal{F}_i\}$, an arbitrary (possibly uncountable) intersection $\bigcap_i \mathcal{F}_i$ is also closed.

Theorem 2.4

For $\{\mathcal{O}_i\}_{i=1}^n$, a finite intersection $\bigcap_i \mathcal{O}_i$ is also open.

Example 2.5

For an infinite intersection, $\{(-\frac{1}{n}, \frac{1}{n})\}_{n \in \mathbb{N}}$ consists solely of the point 0, which is closed in \mathbb{R} .

Definition 2.6. We say that *P* is a limit point in a set $S \subseteq \mathbb{R}$ if for any $\varepsilon > 0$, in an open neighborhood of radius ε , you can find a distinct point other than *p*.

Example 2.7 0 is the limit point of $\{\frac{1}{n}\}_{n \in \mathbb{N}}$.

Not every interval has a limit point; think of $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ in \mathbb{Q} .

Definition 2.8. A set is *closed* iff it contains all of its limit points.

Example 2.9

There are *clopen* sets (think of \mathbb{R} , also \emptyset), also sets that are neither closed nor open (think of (0, 1], for example).

Example 2.10

Is \mathbb{Q} closed? Think of the sequence that goes to $\sqrt{2}$, whose elements are all rationals, yet its limit point is irrational. Hence, \mathbb{Q} is not closed.

Definition 2.11. We call a set A to be *disconnected* in \mathbb{R} if one can find two disjoint $\exists U, V$ in \mathbb{R} such that $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$ and $A = (A \cap U) \cup (A \cap V)$.

Example 2.12 \mathbb{Q} is disconnected; for example, consider $U = (-\infty, \sqrt{2})$ and $V = (\sqrt{2}, \infty)$.

Example 2.13 The cantor set C is disconnected; for example, think of $\frac{1}{2}$.

Example 2.14 In \mathbb{R} , only an interval is connected. The empty set is not.

Definition 2.15. The closure \overline{S} of a set S in \mathbb{R} is the smallest closed set that contains S.

Example 2.16 The closure of \mathbb{Q} is \mathbb{R} .

Example 2.17 The closure of [0, 1) is [0, 1].

Definition 2.18. A set S is *dense* in \mathbb{R} if its closure equals \mathbb{R} .

Example 2.19 \mathbb{Q} is dense in \mathbb{R} .

Definition 2.20. A set S is dense in \mathbb{R} if $\forall x \in \mathbb{R}, \forall \delta > 0, (x - \delta, x + \delta) \cap S \neq \emptyset$.

Example 2.21

The cantor set C is not dense in [0, 1]. Actually, it is *nowhere dense* in [0, 1]. Every single time you decrease the maximum length of any interval by $\frac{1}{3}$, hence for any open subset it is not dense.

Definition 2.22. We call a set $S \subseteq X$ nowhere dense in X if S is not dense in any open subset of X.

Definition 2.23. A set S is sequentially compact if for any sequence $\{s_i\}$ where $s_i \in S$, $\{s_i\}$ contains a convergent subsequence.

Theorem 2.24 (Bolzano-Weierstrass theorem) In \mathbb{R}^n , a set S is sequentially compact if and only if it is closed and bounded.

Exercise 2.25. Show that the order topology on \mathbb{Q} is disconnected.

Proof. Consider $\sqrt{2}$, and the two open intervals adjacent to them. They are disconnected. Hence we are done.

Exercise 2.26. Let $f : X \to Y$ be continuous, and $X' \subseteq X$. Show that if $f' = f|_X$, then f is continuous.

Definition 2.27. Let (X, τ) be a topology. We say X is separable if $\exists Y \subseteq X$ and $|Y| \leq |\mathbb{N}|$ such that $\overline{Y} = X$.

Exercise 2.28. \mathbb{R}^n is separable,

Exercise 2.29. If X, Y are separable, then $X \times Y$ is separable.

Definition 2.30. Let (X, τ_X) and (Y, τ_Y) be topological spaces. Then, the *product topology*, denoted as $X \times Y$, is the smallest topology such that $U \times V$ is open for $U \leftarrow \tau_X$ and $V \leftarrow \tau_Y$.

Exercise 2.31. Let U, V be closed in X, Y respectively, then $U \times V$ is closed in the product topology.

Exercise 2.32. Let $f: X \to Y$ and $g: X \to Z$ be continuous. Then, show that $f \times g$ is continuous, where $f \times g: X \to Y \times Z$ and $x \mapsto (f(x), g(x))$.

Exercise 2.33. Show that $f : X \to Y$ is continuous iff for V closed in Y, $f^{-1}(V)$ is closed.

Exercise 2.34. Let $X' \subseteq X, Y' \subseteq Y$, then show that $X' \times Y'$ is same as the subspace topology on $X \times Y$ of $X' \times Y'$.

Exercise 2.35. Show that [a, b) is in the Borel σ -algebra.

Exercise 2.36. Find the cardinality of the Borel σ -algebra.

§3 Topological spaces

Definition 3.1. A topological space (X, τ) is a set X equipped with a topology τ .

Definition 3.2. A topology τ is a set of subsets of X that satisfies the following properties:

- 1. $\{\emptyset, X\} \subseteq \tau$.
- 2. Arbitrary union: $\bigcup_{i \in I} X_i \in \tau$
- 3. Finite intersection: $\bigcap_{i=1}^{n} X_i \in \tau$.

Example 3.3

For elements A, B, C, we define $2^{\{A, B, C\}} = \{\emptyset, \{A\}, \{B\}, \{C\}, \dots, \{A, B, C\}\}$. Then, $\{\{A, B, C\}, \emptyset\}$ is called the *trivial topology*. Moreover, $2^{\{A, B, C\}}$ is called the *discrete topology*.

Example 3.4

The set $S = \{(-\infty, b), (\infty, \infty), (a, \infty), (a, b) \mid a, b \in \mathbb{R}\}$ has a topology τ . (We define $(a, b) = \emptyset$ if b < a.) We call this the *standard topology* on \mathbb{R} .

Definition 3.5. A topological space (X, τ) is called a *metric space* if it has a metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

- 1. $d(x,y) = 0 \iff x = y$
- 2. $d(x,y) = d(y,x) \quad \forall x, y \in X$
- 3. $d(x,y) \le d(x,z) + d(z,y) \quad \forall x, y, z \in X \text{ (triangle inequality)}$

We denote such a metric space as (X, d).

Corollary 3.6

A metric induces a topology τ , where τ is the smallest set which contains all open balls $B_{\mathbf{x}}(r)$ under finite intersection and arbitrary union, where $B_{\mathbf{x}}(r) := \{(\mathbf{x}, \mathbf{y}) \mid d(\mathbf{x}, \mathbf{y}) < r\}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Definition 3.7. $C^{k}[0,1]$ is defined as the set of continuous functions on the closed interval [0,1] with a continuous k^{th} derivative. We denote $C^{0}[0,1] = C[0,1]$, i.e., the set of continuous functions on the closed interval [0,1].

Example 3.8

Here are some examples of metric spaces:

- d(x,y) = |x y| is a metric.
- $\frac{d(x,y)}{1+d(x,y)}$ is a metric if d(x,y) is a metric.
- For $f, g \in C[0, 1]$, then

$$d(f,g) = \int_0^1 |f - g| dx$$

is a metric.

• The discrete metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Definition 3.9. A metric space (X, d) is *complete* if all Cauchy sequences necessarily converge.

Theorem 3.10

Each metric space has a completion. That is, for all metric spaces (X, d), there exists a metric space (Y, d) where Y is complete.

Example 3.11 $\mathbb{Q} \subseteq \mathbb{R}$. (\mathbb{R} is the completion of \mathbb{Q} .)

Theorem 3.12 (Baire category theorem (BCT))

For any metric space (X, d), a countable set $\{X_i\}_{i=1}^{\infty}$, $X_i \subseteq X$, and X_i being an open dense set in X, we have

$$\bigcap_{i=1}^{\infty} X_i \text{ is dense in } X$$

A metric space with this property is called a Baire space.

Proof. For an open subset $W \subseteq X$, we may construct a closed ball $\overline{B}(x_1, r_1) \subseteq X_1 \cap W$, since we may take its radius to be slightly smaller than its open counterpart, which always exists. Then, for all $n \geq 2$, $\overline{B}(x_n, y_n) \subseteq X_n \cap \overline{B}(x_{n-1}, r_{n-1})$ for $0 < r_n < \frac{1}{n}$, that is, we construct a decreasing sequence of closed balls. Then, consider $\{\overline{B}(x_i, y_i)\}_{i=1}^{\infty}$, then because X is a complete metric space, the sequence is Cauchy thus convergent, and the sequence $\{y_i\} \to y$ has its limit point $y \in X$ residing in each of the closed balls. Hence, $y \in (\bigcap X_i) \cap W$, so $\{X_i\}_{i=1}^{\infty}$ is dense in X, and we are done. \Box

Corollary 3.13

Liouville's approximation theorem can be proved via Baire category theorem.

Definition 3.14. A σ -algebra (X, Σ) on a set X is a nonempty collection Σ of subsets of X with the following properties:

- $\{\emptyset, X\} \subset \Sigma$
- closed under countable unions
- closed under countable intersections
- closed under complement

The ordered pair (X, Σ) is called a measurable space.

§4 Cardinalities and Equinumerosity

Definition 4.1. A set X is *countably infinite* if there is a bijection between X and \mathbb{N} .

Theorem 4.2 (Cantor-Schröder-Bernstein theorem) $\forall X \nexists f : X \to 2^X$ such that f is surjective.

Proof. Let $f: X \to 2^X$ be a surjective function. Let $A \subset X$ s.t. $A = \{x \in X \mid x \notin f(x)\}$. Hence, $\exists y \in X$ such that f(y) = A, which implies $f(y) = \{x \in X \mid x \notin f(x)\}$. We divide cases into whether y is in the RHS. If $y \in f(y)$, then $y \notin f(y) = A$ by the given equation, contradiction. If not, then $y \in f(y) = A$, contradiction. Thus, we are done.

Remark. Axiom of choice.

Example 4.3 $\nexists f : \mathbb{N} \twoheadrightarrow \mathbb{R}$, i.e., that f is surjective.

Definition 4.4. Let X, Y be sets. $|X| \le |Y|$ means there is an injection from $X \to Y$. Here, the binary operation \le is a total order.

Example 4.5 (Beth numbers)

We may create the sequence of sets $|\mathbb{N}| < |\mathbb{R} = 2^{\aleph_0}| < |2^{\mathbb{R}}| < |2^{2^{\mathbb{R}}}| < \dots$ The sequence of beth numbers is defined by setting $\beth_0 = \aleph_0$ and $\beth_{k+1} = 2^{\beth_k}$.

Theorem 4.6

If $|X| \leq |Y|$ and $|Y| \leq |X|$, then |X| = |Y|.

Definition 4.7. We define an orbit $\operatorname{orb}_f(x)$ of an element $x \in X$ to be the set of all the elements we get when we apply a function $f: X \to X$ *n* times or undo a function *n* times. Formally, $\operatorname{orb}_f(x) = \{x\} \cup \{f^n(x)\} \cup \{f^{-n}(x)\}$.

Proof. Note that $f: X \to Y$ and $g: Y \to X$ are both injective. Consider $f \circ g: Y \to Y$ which is injective. Let $y \in Y$. Then, we have

$$\operatorname{orb}_{f \circ g}(y) = \{y\} \cup \{(f \circ g)^n(y)\} \cup \{(f \circ g)^{-n}(y)\}$$

and

$$\operatorname{orb}_{g \circ f}(x) = \{x\} \cup \{(g \circ f)^n(x)\} \cup \{(g \circ f)^{-n}(x)\}$$

How does $\operatorname{orb}(y)$ and $\operatorname{orb}(g(y))$ relate? Take Axiom of Choice for each orbit, then inject.

Exercise 4.8. Prove $|C[0,1]| \leq |\mathbb{R}|$.

Proof. Let $f \in C[0,1]$. For some $x \in [0,1]$ s.t. $g(x) \neq f(x)$ and $g \in C[0,1]$, consider $f' := f|_{\mathbb{Q}\cap[0,1]}$ and $g' := g|_{\mathbb{Q}\cap[0,1]}$ and f' = g'. But if there exists a sequence $a_n \to x$ s.t. $f(a_n) \to f(x)$ and $g(a_n) \to g(x)$, then at some point they must differ, otherwise f(x) = g(x), which is a contradiction. Thus, $|C[0,1]| \leq |\mathbb{R}^{\mathbb{Q}}|$. Hence, ISTS $|\mathbb{R}^{\mathbb{Q}}| = |\mathbb{R}|$. But we have $|\mathbb{R}^{\mathbb{Q}}| = |(2^{\aleph_0})^{\aleph_0}| = |2^{\aleph_0 \times \aleph_0}| = |2^{\aleph_0}| = |\mathbb{R}|$.

Exercise 4.9. Let x be countably infinite. Prove $|x^x| = |2^x|$.

Proof. We have
$$|x| = \aleph_0$$
. Now, $|x^x| = |\aleph_0^{\aleph_0}| = |2^{\aleph_0}|$, so we are done.

§5 Sequences and series

Definition 5.1. We say $\{a_n\}_{n=1}^{\infty}$ converges to a limit a if $\forall \varepsilon > 0$, $\exists N$ such that $d(a_n, a) < \varepsilon \quad \forall n > N$.

Theorem 5.2

If $a_n \to a$ and $b_n \to b$, then $a_n + b_n \to a + b$.

Proof. Let $\varepsilon > 0$.

Then, because a_n converges to a, $\exists N_1$ such that $d(a_n, a) < \frac{\varepsilon}{2} \quad \forall n > N_1$. Similarly, because b_n converges to b, $\exists N_2$ such that $d(b_n, b) < \frac{\varepsilon}{2} \quad \forall n > N_2$. Observe that $d(a_n, a) + d(b_n, b) \ge d(a_n + b_n, a + b)$ by the triangle inequality.

Observe that $d(a_n, a) + d(b_n, b) \ge d(a_n + b_n, a + b)$ by the triangle inequality, so $d(a_n + b_n, a + b) < \varepsilon/2 + \varepsilon/2 = \varepsilon \quad \forall n > \max(N_1, N_2).$

Theorem 5.3

If $a_n \to a$ and $b_n \to b$, then $a_n b_n \to ab$.

Hence, $a_n + b_n$ converges to a + b.

Proof. Let $\varepsilon > 0$.

Then, because a_n converges to a, $\exists N_1$ such that $d(a_n, a) < \frac{\varepsilon}{2} \quad \forall n > N_1$. Similarly, because b_n converges to b, $\exists N_2$ such that $d(b_n, b) < \frac{\varepsilon}{2} \quad \forall n > N_2$. Observe that $d(a_n b_n, ab) = d((a - a_n)(b - b_n), a(b_n - b) + a(a_n - a)) \le d((a - a_n)(b - b_n))$ $(b_n), 0) + d(a(b_n - b), 0) + d(b(a_n - a), 0)$ by the triangle inequality, so $d(a_n b_n, ab) < 0$ $\varepsilon \quad \forall n > \max(N_1, N_2).$

Hence, $a_n b_n$ converges to ab.

Theorem 5.4 If $a_n \to a$ and $b_n \to b$ (with $b_n \neq 0$ and $b \neq 0$), then $a_n/b_n \to a/b$.

Proof. Similar to above.

Definition 5.5. A sequence $\{a_n\}_{n=1}^{\infty}$ is said to be *Cauchy* if $\forall \varepsilon > 0 \exists N \text{ s.t. } \forall n, m > N$, $d(a_n, a_m) < \varepsilon.$

Theorem 5.6 (Cauchy implies convergence) Let $\{a_n\}_{n=1}^{\infty}$ be Cauchy, then a_n converges.

Proof. Next class.

Theorem 5.7 (Convergent sequences are Cauchy) Let $\{a_n\}_{n=1}^{\infty}$ be a convergent sequence, then a_n is Cauchy.

Proof. Obvious.

§6 Fourier series

Definition 6.1 (Length of a curve). Let $f : [0,1] \to \mathbb{R}^n$ be continuous.

Then, we define

$$en(f) = \lim_{(d_{i+1}-d_i)\to 0} \sum \|f(d_{i+1}) - f(d_i)\|$$

Definition 6.2. Let $f : \mathbb{R} \to \mathbb{R}$ be a periodic function with period τ , i.e., $f(x + \tau) =$ $f(x) \quad \forall x.$

Consider the complex integral

1

$$c_n = \frac{2\pi}{\tau} \int_0^\tau e^{\frac{-in\phi 2\pi}{\tau}} f(\phi) d\phi$$

then we have the following identity

$$f(\theta) = \sum_{n \in \mathbb{Z}} e^{in\theta} c_n$$

If $\sum_{n \in \mathbb{Z}} |c_n|^2 < \infty$, then equality actually holds.

9

Theorem 6.3

Let $f:[0,2\pi] \to \mathbb{R}$ be a continuous function. Then,

 $\forall \varepsilon > 0 \ \exists g \in \mathbb{R}[x] \text{ s.t. } d(g, f) < \varepsilon$

Theorem 6.4 If $f(0) = f(2\pi)$, then $\forall \varepsilon > 0 \exists g \in \operatorname{span}(e^{in\theta})$ s.t. $d(g, f) < \varepsilon$.

Definition 6.5. A perfect set is a closed set without isolated points.

Definition 6.6. We say $x \in X$ is *isolated* if for $X \subseteq S$, $\exists \mathcal{O}$ open in S such that $\mathcal{O} \cap X = \{x\}$.

Example 6.7

There does not exist an isolated point in \mathbb{Q} .

Example 6.8

The Cantor set is a perfect set.

Definition 6.9. We say a set is *totally disconnected* if the "largest" connected set is a single point.

Definition 6.10. For a subset X with respect to the parent set Y, we say that X has a subspace topology τ in Y where $\tau = \{\mathcal{O} \cap X \mid \mathcal{O} \text{ open in } Y\}$ for $\mathcal{O} \subseteq Y$ and $\mathcal{O} \subseteq X$.

Exercise 6.11. Verify that τ is a topology in X.

Lemma 6.12

Let Y have topology τ . Let $X \subseteq Y$ and $\tau_x = \{\mathcal{O} \cap X \mid \mathcal{O} \in \tau\}$. Let $\{u_i\} \subseteq \tau_x$. We have $u_i = \mathcal{O}_i \cap X$ for $\mathcal{O}_i \in \tau$. Then, $\bigcup_{i \in I} u_i = [\bigcup_{i \in I} \mathcal{O}_i] \cap X$. Let $u, v \in \tau_x$. It suffices to show that $U \cap V \in \tau_x$. Then, $U = \mathcal{O}_1 \cap X$ and $V = \mathcal{O}_2 \cap X$, so $U \cap V = (\mathcal{O}_1 \cap \mathcal{O}_2) \cap X$, hence we are done.

Theorem 6.13

Every nonempty perfect set $X \subseteq \mathbb{R}$ (or some other complete metric space) is uncountable.

Proof. We proceed with proof by contradiction. Assume there existed a countable perfect set, denoted as $\{x_i\}_{i=1}^{\infty}$.

Then, take an open set in \mathbb{R} by taking a cut on some point x_j , i.e., $S = \{x_i\} \setminus x_j$, then for any x_j , S is open with respect to the subspace topology.

Lemma 6.14

For $\{x_i\} \subset \mathbb{R}$ and any $x_j \in \{x_i\}$, the set $\{x_i\} \setminus x_j$ is dense in $\{x_i\}$ with respect to the subspace topology of $\{x_i\}$.

Proof. Take any open, nonempty, dense set in $\{x_i\}$. Then, we have $\mathcal{O} \cap \{x_i\} \setminus x_j \neq \emptyset$. But then $\{x_i\}$ has no isolated point as a subset in \mathbb{R} .

Then, $\bigcap (\{x_i\} \setminus x_j)$ is dense, but it is \emptyset , contradiction.

§7 Uniform continuity

Example 7.1

A pathological example: let $f_n(x) = x^n$, then $f_n(x)$ is continuous for all $n \in \mathbb{N}$, yet

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

is not continuous on [0, 1].

Definition 7.2 (Uniform continuity for a series of functions). Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions, then f_n is uniformly continuous if and only if $f := \lim_{n \to \infty} f_n$ where f is continuous.

Definition 7.3 (Uniform continuity). A function f is called *uniformly continuous* if for every real number $\varepsilon > 0$ there exists a real number $\delta > 0$ such that for every $x, y \in X$ with $d_1(x, y) < \delta$, we have $d_2(f(x), f(y)) < \varepsilon$.

For each x, the set

$$\{y \in X : d_1(x, y) < \delta\}$$

is a δ -neighborhood of x.

Definition 7.4 (Bounded in a metric space). A set X is bounded iff $\forall x, y \in X, \exists M > 0$ such that $d(x, y) \leq M$.

Theorem 7.5 (Heine-Cantor theorem)

A continuous function on a compact set is uniformly continuous.

Definition 7.6 (Supremum norm). Define the supremum norm of two functions $f, g \in C[0, 1]$ as

$$d(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|$$

Definition 7.7. Let

$$A_{n,m} := \{ f \in C[0,1] \mid \exists x \in [0,1] \text{ such that } \frac{f(t) - f(x)}{t - x} \le n \text{ if } t - x < \frac{1}{m} \}$$

Denote D_f to be the set of differentiable functions. Then, $D_f \subset \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_{n,m}$, that is, every differentiable function f is in $A_{n,m}$.

Definition 7.8. A set *E* is *meager* if it can be written as a countable union of nowhere dense sets. A set *E* is *nonmeager* if it is not meager. A set *E* is *comeager* if E^{\complement} is meager.

§8 Pathological functions

Example 8.1 (Weierstrass function) Let $f(x) = \sum_{k=1}^{\infty} a^k \cos(b^k \pi x)$, where 0 < a < 1 and $ab > 1 + \frac{3}{2}\pi$. This function is continuous everywhere, yet differentiable nowhere.

Example 8.2 (Devil's staircase)

Discussed in detail in Cantor functions.

Example 8.3 Let $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R}/\mathbb{Q} \\ 0 & \text{if } x \in \mathbb{Q} \end{cases}$. Then, f is not Riemann integrable but is Lebesgue integrable.

Example 8.4 Let $f_n(x) = \sum_{n=0}^{\infty} \frac{1}{1+n^2x}$. Then, f is uniformly continuous on $\mathbb{R} - \{\frac{1}{n^2}\}_{n=1}^{\infty}$.

Example 8.5

 $\exists f \in L^1(\mathbb{R})$ whose Fourier series does not converge at any point.

Example 8.6

 $\exists f \in C[\mathbb{R}]$ that is continuous yet nowhere monotone. Take f be the Weierstrass function.