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Analysis & Topology

Jiwu Jang

June 17, 2023

This is a note on a series of lectures on real analysis and topology, given by Xinkai Wu,
Mustafa Nawaz, and Pico Gilman, at the 2023 Ross Mathematics Program at Otterbein
College.

§1 Terminology

Definition 1.1. R is the completion of Q.

Claim — There is a set R ⊃ Q such that R is totally ordered and complete.

Definition 1.2. A set is a collection of elements. (Näıve set theoretic definition of a set)

Definition 1.3. If S is a set, we write x ∈ S to indicate an element x is in the set S.

Definition 1.4. If A,B are sets, then we write A ⊂ B if ∀x ∈ A =⇒ x ∈ B.
For A ⊃ B, we take the dual definition.

Definition 1.5. We say A = B if A ⊃ B and A ⊂ B.

Definition 1.6. Let R be a ring. We define R × R = {(r1, r2) | r1, r2 ∈ R} and
(r1, r2) + (r3, r4) = {(r1 + r3, r2 + r4) | (r1, r2), (r3, r4) ∈ R×R}.

Definition 1.7. We have an equivalence relation ∼ on Q : Z × (Z \ {0}), where
(a, b) ∼ (c, d) ⇐⇒ ad− bc = 0.

Example 1.8

For example, (1, 2) ∼ (3, 6).

Exercise 1.9. Check that ∼ is indeed an equivalence relation.

Theorem 1.10

Q is totally ordered with <, >, and =.

Definition 1.11. If S is an ordered set, E ⊂ S, and ∃α ∈ S s.t. ∀x ∈ E, x ≤ α, then we
say α is an upper bound of E. If ∄γ ∈ S s.t. γ < α, then we say α is a least upper bound.
We define the greatest lower bound dually.
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Definition 1.12. We define a set F to be a field if it is a nontrivial commutative ring
such that every nonzero element has an inverse.

Example 1.13

Q is a field.

Definition 1.14. We define the field of complex numbers C := R[x]/(x2 + 1) where
x2+1 is an ideal in R[x], equipped with the operations + : C×C→ C and · : C×C→ C
where (a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (ac− bd, ad+ bc).

§2 Point-Set Topology

In R, a set O is open if ∀x ∈ O, ∃δ > 0 s.t. (x− δ, x+ δ) ∈ O.
A set F is closed if F∁ is open.

Example 2.1

N is closed since it does not have any limit points.

Theorem 2.2

For {Oi}, an arbitrary union
⋃

iOi is also open.

Corollary 2.3

For {Fi}, an arbitrary (possibly uncountable) intersection
⋂

iFi is also closed.

Theorem 2.4

For {Oi}ni=1, a finite intersection
⋂

iOi is also open.

Example 2.5

For an infinite intersection, {(− 1
n ,

1
n)}n∈N consists solely of the point 0, which is

closed in R.

Definition 2.6. We say that P is a limit point in a set S ⊆ R if for any ε > 0, in an
open neighborhood of radius ε, you can find a distinct point other than p.

Example 2.7

0 is the limit point of { 1n}n∈N.

Not every interval has a limit point; think of { 1n}n∈N in Q.

Definition 2.8. A set is closed iff it contains all of its limit points.
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Example 2.9

There are clopen sets (think of R, also ∅), also sets that are neither closed nor open
(think of (0, 1], for example).

Example 2.10

Is Q closed? Think of the sequence that goes to
√
2, whose elements are all rationals,

yet its limit point is irrational. Hence, Q is not closed.

Definition 2.11. We call a set A to be disconnected in R if one can find two disjoint
∃U, V in R such that A ∩ U ̸= ∅ and A ∩ V ̸= ∅ and A = (A ∩ U) ∪ (A ∩ V ).

Example 2.12

Q is disconnected; for example, consider U = (−∞,
√
2) and V = (

√
2,∞).

Example 2.13

The cantor set C is disconnected; for example, think of 1
2 .

Example 2.14

In R, only an interval is connected. The empty set is not.

Definition 2.15. The closure S of a set S in R is the smallest closed set that contains S.

Example 2.16

The closure of Q is R.

Example 2.17

The closure of [0, 1) is [0, 1].

Definition 2.18. A set S is dense in R if its closure equals R.

Example 2.19

Q is dense in R.

Definition 2.20. A set S is dense in R if ∀x ∈ R, ∀δ > 0, (x− δ, x+ δ) ∩ S ̸= ∅.
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Example 2.21

The cantor set C is not dense in [0, 1]. Actually, it is nowhere dense in [0, 1]. Every
single time you decrease the maximum length of any interval by 1

3 , hence for any
open subset it is not dense.

Definition 2.22. We call a set S ⊆ X nowhere dense in X if S is not dense in any open
subset of X.

Definition 2.23. A set S is sequentially compact if for any sequence {si} where si ∈ S,
{si} contains a convergent subsequence.

Theorem 2.24 (Bolzano-Weierstrass theorem)

In Rn, a set S is sequentially compact if and only if it is closed and bounded.

Exercise 2.25. Show that the order topology on Q is disconnected.

Proof. Consider
√
2, and the two open intervals adjacent to them. They are disconnected.

Hence we are done.

Exercise 2.26. Let f : X → Y be continuous, and X ′ ⊆ X. Show that if f ′ = f |X , then
f is continuous.

Definition 2.27. Let (X, τ) be a topology. We say X is separable if ∃Y ⊆ X and
|Y | ≤ |N| such that Y = X.

Exercise 2.28. Rn is separable.

Exercise 2.29. If X,Y are separable, then X × Y is separable.

Definition 2.30. Let (X, τX) and (Y, τY ) be topological spaces. Then, the product
topology, denoted as X ×Y , is the smallest topology such that U ×V is open for U ← τX
and V ← τY .

Exercise 2.31. Let U, V be closed in X,Y respectively, then U × V is closed in the
product topology.

Exercise 2.32. Let f : X → Y and g : X → Z be continuous. Then, show that f × g is
continuous, where f × g : X → Y × Z and x 7→ (f(x), g(x)).

Exercise 2.33. Show that f : X → Y is continuous iff for V closed in Y , f−1(V ) is
closed.

Exercise 2.34. Let X ′ ⊆ X, Y ′ ⊆ Y , then show that X ′ × Y ′ is same as the subspace
topology on X × Y of X ′ × Y ′.

Exercise 2.35. Show that [a, b) is in the Borel σ-algebra.

Exercise 2.36. Find the cardinality of the Borel σ-algebra.

§3 Topological spaces

Definition 3.1. A topological space (X, τ) is a set X equipped with a topology τ .
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Definition 3.2. A topology τ is a set of subsets ofX that satisfies the following properties:

1. {∅, X} ⊆ τ .

2. Arbitrary union:
⋃

i∈I Xi ∈ τ

3. Finite intersection:
⋂n

i=1Xi ∈ τ .

Example 3.3

For elements A,B,C, we define 2{A,B,C} = {∅, {A}, {B}, {C}, . . . , {A,B,C}}.
Then, {{A,B,C}, ∅} is called the trivial topology.
Moreover, 2{A,B,C} is called the discrete topology.

Example 3.4

The set S = {(−∞, b), (∞,∞), (a,∞), (a, b) | a, b ∈ R} has a topology τ . (We define
(a, b) = ∅ if b < a.) We call this the standard topology on R.

Definition 3.5. A topological space (X, τ) is called a metric space if it has a metric
d : X ×X → R≥0.

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X (triangle inequality)

We denote such a metric space as (X, d).

Corollary 3.6

A metric induces a topology τ , where τ is the smallest set which contains all open
balls Bx(r) under finite intersection and arbitrary union, where Bx(r) := {(x,y) |
d(x,y) < r} for x,y ∈ Rn.

Definition 3.7. Ck[0, 1] is defined as the set of continuous functions on the closed
interval [0, 1] with a continuous kth derivative. We denote C0[0, 1] = C[0, 1], i.e., the set
of continuous functions on the closed interval [0, 1].
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Example 3.8

Here are some examples of metric spaces:

• d(x, y) = |x− y| is a metric.

•
d(x, y)

1 + d(x, y)
is a metric if d(x, y) is a metric.

• For f, g ∈ C[0, 1], then

d(f, g) =

∫ 1

0
|f − g|dx

is a metric.

• The discrete metric

d(x, y) =

{
1 if x ̸= y

0 if x = y

Definition 3.9. A metric space (X, d) is complete if all Cauchy sequences necessarily
converge.

Theorem 3.10

Each metric space has a completion. That is, for all metric spaces (X, d), there
exists a metric space (Y, d) where Y is complete.

Example 3.11

Q ⊆ R. (R is the completion of Q.)

Theorem 3.12 (Baire category theorem (BCT))

For any metric space (X, d), a countable set {Xi}∞i=1, Xi ⊆ X, and Xi being an
open dense set in X, we have

∞⋂
i=1

Xi is dense in X

A metric space with this property is called a Baire space.

Proof. For an open subset W ⊆ X, we may construct a closed ball B(x1, r1) ⊆ X1 ∩W ,
since we may take its radius to be slightly smaller than its open counterpart, which
always exists. Then, for all n ≥ 2, B(xn, yn) ⊆ Xn ∩B(xn−1, rn−1) for 0 < rn < 1

n , that
is, we construct a decreasing sequence of closed balls. Then, consider {B(xi, yi)}∞i=1, then
because X is a complete metric space, the sequence is Cauchy thus convergent, and the
sequence {yi} → y has its limit point y ∈ X residing in each of the closed balls. Hence,
y ∈ (

⋂
Xi) ∩W , so {Xi}∞i=1 is dense in X, and we are done.
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Corollary 3.13

Liouville’s approximation theorem can be proved via Baire category theorem.

Definition 3.14. A σ-algebra (X,Σ) on a set X is a nonempty collection Σ of subsets
of X with the following properties:

• {∅, X} ⊂ Σ

• closed under countable unions

• closed under countable intersections

• closed under complement

The ordered pair (X,Σ) is called a measurable space.

§4 Cardinalities and Equinumerosity

Definition 4.1. A set X is countably infinite if there is a bijection between X and N.

Theorem 4.2 (Cantor-Schröder-Bernstein theorem)

∀X∄f : X → 2X such that f is surjective.

Proof. Let f : X → 2X be a surjective function.
Let A ⊂ X s.t. A = {x ∈ X | x ̸∈ f(x)}.
Hence, ∃y ∈ X such that f(y) = A, which implies f(y) = {x ∈ X | x ̸∈ f(x)}.
We divide cases into whether y is in the RHS.
If y ∈ f(y), then y ̸∈ f(y) = A by the given equation, contradiction.
If not, then y ∈ f(y) = A, contradiction.
Thus, we are done.

Remark. Axiom of choice.

Example 4.3

∄f : N ↠ R, i.e., that f is surjective.

Definition 4.4. Let X,Y be sets. |X| ≤ |Y | means there is an injection from X → Y .
Here, the binary operation ≤ is a total order.

Example 4.5 (Beth numbers)

We may create the sequence of sets |N| < |R = 2ℵ0 | < |2R| < |22R | < . . . .
The sequence of beth numbers is defined by setting ℶ0 = ℵ0 and ℶk+1 = 2ℶk .
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Theorem 4.6

If |X| ≤ |Y | and |Y | ≤ |X|, then |X| = |Y |.

Definition 4.7. We define an orbit orbf (x) of an element x ∈ X to be the set of all the
elements we get when we apply a function f : X → X n times or undo a function n
times. Formally, orbf (x) = {x} ∪ {fn(x)} ∪ {f−n(x)}.

Proof. Note that f : X → Y and g : Y → X are both injective. Consider f ◦ g : Y → Y
which is injective. Let y ∈ Y . Then, we have

orbf◦g(y) = {y} ∪ {(f ◦ g)n(y)} ∪ {(f ◦ g)−n(y)}

and
orbg◦f (x) = {x} ∪ {(g ◦ f)n(x)} ∪ {(g ◦ f)−n(x)}

How does orb(y) and orb(g(y)) relate? Take Axiom of Choice for each orbit, then
inject.

Exercise 4.8. Prove |C[0, 1]| ≤ |R|.

Proof. Let f ∈ C[0, 1]. For some x ∈ [0, 1] s.t. g(x) ̸= f(x) and g ∈ C[0, 1], consider
f ′ := f |Q∩[0,1] and g′ := g|Q∩[0,1] and f ′ = g′. But if there exists a sequence an → x
s.t. f(an) → f(x) and g(an) → g(x), then at some point they must differ, otherwise
f(x) = g(x), which is a contradiction. Thus, |C[0, 1]| ≤ |RQ|. Hence, ISTS |RQ| = |R|.
But we have |RQ| = |(2ℵ0)ℵ0 | = |2ℵ0×ℵ0 | = |2ℵ0 | = |R|.

Exercise 4.9. Let x be countably infinite. Prove |xx| = |2x|.

Proof. We have |x| = ℵ0. Now, |xx| = |ℵ0ℵ0 | = |2ℵ0 |, so we are done.

§5 Sequences and series

Definition 5.1. We say {an}∞n=1 converges to a limit a if ∀ε > 0, ∃N such that d(an, a) <
ε ∀n > N .

Theorem 5.2

If an → a and bn → b, then an + bn → a+ b.

Proof. Let ε > 0.
Then, because an converges to a, ∃N1 such that d(an, a) <

ε
2 ∀n > N1.

Similarly, because bn converges to b, ∃N2 such that d(bn, b) <
ε
2 ∀n > N2.

Observe that d(an, a) + d(bn, b) ≥ d(an + bn, a + b) by the triangle inequality, so
d(an + bn, a+ b) < ε/2 + ε/2 = ε ∀n > max(N1, N2).
Hence, an + bn converges to a+ b.

Theorem 5.3

If an → a and bn → b, then anbn → ab.
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Proof. Let ε > 0.
Then, because an converges to a, ∃N1 such that d(an, a) <

ε
2 ∀n > N1.

Similarly, because bn converges to b, ∃N2 such that d(bn, b) <
ε
2 ∀n > N2.

Observe that d(anbn, ab) = d((a− an)(b− bn), a(bn − b) + a(an − a)) ≤ d((a− an)(b−
bn), 0) + d(a(bn − b), 0) + d(b(an − a), 0) by the triangle inequality, so d(anbn, ab) <
ε ∀n > max(N1, N2).

Hence, anbn converges to ab.

Theorem 5.4

If an → a and bn → b (with bn ̸= 0 and b ̸= 0), then an/bn → a/b.

Proof. Similar to above.

Definition 5.5. A sequence {an}∞n=1 is said to be Cauchy if ∀ε > 0 ∃N s.t. ∀n,m > N ,
d(an, am) < ε.

Theorem 5.6 (Cauchy implies convergence)

Let {an}∞n=1 be Cauchy, then an converges.

Proof. Next class.

Theorem 5.7 (Convergent sequences are Cauchy)

Let {an}∞n=1 be a convergent sequence, then an is Cauchy.

Proof. Obvious.

§6 Fourier series

Definition 6.1 (Length of a curve). Let f : [0, 1]→ Rn be continuous.
Then, we define

len(f) = lim
(di+1−di)→0

∑
∥f(di+1)− f(di)∥

Definition 6.2. Let f : R → R be a periodic function with period τ , i.e., f(x+ τ) =
f(x) ∀x.
Consider the complex integral

cn =
2π

τ

∫ τ

0
e

−inϕ2π
τ f(ϕ)dϕ

then we have the following identity

f(θ) =
∑
n∈Z

einθcn

If
∑

n∈Z |cn|2 <∞, then equality actually holds.
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Theorem 6.3

Let f : [0, 2π]→ R be a continuous function. Then,

∀ε > 0 ∃g ∈ R[x] s.t. d(g, f) < ε

Theorem 6.4

If f(0) = f(2π), then ∀ε > 0 ∃g ∈ span(einθ) s.t. d(g, f) < ε.

Definition 6.5. A perfect set is a closed set without isolated points.

Definition 6.6. We say x ∈ X is isolated if for X ⊆ S, ∃O open in S such that
O ∩X = {x}.

Example 6.7

There does not exist an isolated point in Q.

Example 6.8

The Cantor set is a perfect set.

Definition 6.9. We say a set is totally disconnected if the “largest” connected set is a
single point.

Definition 6.10. For a subset X with respect to the parent set Y , we say that X has a
subspace topology τ in Y where τ = {O ∩X | O open in Y } for O ⊆ Y and O ⊆ X.

Exercise 6.11. Verify that τ is a topology in X.

Lemma 6.12

Let Y have topology τ . Let X ⊆ Y and τx = {O ∩X | O ∈ τ}. Let {ui} ⊆ τx. We
have ui = Oi ∩X for Oi ∈ τ . Then,

⋃
i∈I ui = [

⋃
i∈I Oi] ∩X. Let u, v ∈ τx.

It suffices to show that U ∩ V ∈ τx. Then, U = O1 ∩ X and V = O2 ∩ X, so
U ∩ V = (O1 ∩ O2) ∩X, hence we are done.

Theorem 6.13

Every nonempty perfect set X ⊆ R (or some other complete metric space) is
uncountable.

Proof. We proceed with proof by contradiction. Assume there existed a countable perfect
set, denoted as {xi}∞i=1.
Then, take an open set in R by taking a cut on some point xj , i.e., S = {xi} \ xj , then

for any xj , S is open with respect to the subspace topology.
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Lemma 6.14

For {xi} ⊂ R and any xj ∈ {xi}, the set {xi} \ xj is dense in {xi} with respect to
the subspace topology of {xi}.

Proof. Take any open, nonempty, dense set in {xi}. Then, we have O ∩ {xi} \ xj ̸= ∅.
But then {xi} has no isolated point as a subset in R.

Then,
⋂

({xi} \ xj) is dense, but it is ∅, contradiction.

§7 Uniform continuity

Example 7.1

A pathological example: let fn(x) = xn, then fn(x) is continuous for all n ∈ N, yet

lim
n→∞

fn(x) =

{
0 if x ̸= 1

1 if x = 1

is not continuous on [0, 1].

Definition 7.2 (Uniform continuity for a series of functions). Let {fn}∞n=1 be a sequence
of functions, then fn is uniformly continuous if and only if f := limn→∞ fn where f is
continuous.

Definition 7.3 (Uniform continuity). A function f is called uniformly continuous if for
every real number ε > 0 there exists a real number δ > 0 such that for every x, y ∈ X
with d1(x, y) < δ, we have d2(f(x), f(y)) < ε.

For each x, the set
{y ∈ X : d1(x, y) < δ}

is a δ-neighborhood of x.

Definition 7.4 (Bounded in a metric space). A set X is bounded iff ∀x, y ∈ X, ∃M > 0
such that d(x, y) ≤M .

Theorem 7.5 (Heine-Cantor theorem)

A continuous function on a compact set is uniformly continuous.

Definition 7.6 (Supremum norm). Define the supremum norm of two functions f, g ∈
C[0, 1] as

d(f, g) := sup
x∈[0,1]

|f(x)− g(x)|

Definition 7.7. Let

An,m := {f ∈ C[0, 1] | ∃x ∈ [0, 1] such that
f(t)− f(x)

t− x
≤ n if t− x <

1

m
}

Denote Df to be the set of differentiable functions. Then, Df ⊂
∞⋃
n=1

∞⋃
m=1

An,m, that is,

every differentiable function f is in An,m.
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Definition 7.8. A set E is meager if it can be written as a countable union of nowhere
dense sets. A set E is nonmeager if it is not meager. A set E is comeager if E∁ is meager.

§8 Pathological functions

Example 8.1 (Weierstrass function)

Let f(x) =

∞∑
k=1

ak cos(bkπx), where 0 < a < 1 and ab > 1 + 3
2π. This function is

continuous everywhere, yet differentiable nowhere.

Example 8.2 (Devil’s staircase)

Discussed in detail in Cantor functions.

Example 8.3

Let f(x) =

{
1 if x ∈ R/Q
0 if x ∈ Q

. Then, f is not Riemann integrable but is Lebesgue

integrable.

Example 8.4

Let fn(x) =
∞∑
n=0

1

1 + n2x
. Then, f is uniformly continuous on R− { 1

n2
}∞n=1.

Example 8.5

∃f ∈ L1(R) whose Fourier series does not converge at any point.

Example 8.6

∃f ∈ C[R] that is continuous yet nowhere monotone. Take f be the Weierstrass
function.
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