Analysis & Topology

JIWU JANG

June 17, 2023

This is a note on a series of lectures on real analysis and topology, given by Xinkai Wu,
Mustafa Nawaz, and Pico Gilman, at the 2023 Ross Mathematics Program at Otterbein
College.

§1 Terminology

Definition 1.1. R is the completion of Q.

| Claim — There is a set R D Q such that R is totally ordered and complete.

Definition 1.2. A set is a collection of elements. (Naive set theoretic definition of a set)
Definition 1.3. If S is a set, we write x € S to indicate an element x is in the set S.

Definition 1.4. If A, B are sets, then we write AC BifVt € A — z € B.
For A D B, we take the dual definition.

Definition 1.5. Wesay A= Bif AD Band A C B.

Definition 1.6. Let R be a ring. We define R x R = {(r1,7r2) | r1,72 € R} and
(r1,7m2) + (13,74) = {(r1 + 73,72 +74) | (11,72), (r3,74) € R X R}.

Definition 1.7. We have an equivalence relation ~ on Q : Z x (Z \ {0}), where
(a,b) ~ (¢,d) <= ad —bc=0.

Example 1.8
For example, (1,2) ~ (3,6).

Exercise 1.9. Check that ~ is indeed an equivalence relation.

Theorem 1.10
Q is totally ordered with <, >, and =.

Definition 1.11. If S is an ordered set, £ C S, and da € S s.t. Vo € E, x < «, then we
say o is an upper bound of E. If By € S s.t. v < «, then we say « is a least upper bound.
We define the greatest lower bound dually.
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Definition 1.12. We define a set F to be a field if it is a nontrivial commutative ring
such that every nonzero element has an inverse.

Example 1.13
Q is a field.

Definition 1.14. We define the field of complex numbers C := R[z]/(2? 4 1) where
22+ 1 is an ideal in R[z], equipped with the operations +: C xC — C and - : CxC — C
where (a,b) + (¢,d) = (a + ¢,b+ d) and (a,b) - (¢,d) = (ac — bd, ad + be).

§2 Point-Set Topology

In R, aset Oisopenif Ve e O, 35 > 0s.t. (x—3d,z+0) €O.
A set F is closed if FU is open.

Example 2.1
N is closed since it does not have any limit points.
4 )
Theorem 2.2
For {O;}, an arbitrary union J; O; is also open.
4 N
Corollary 2.3
For {F;}, an arbitrary (possibly uncountable) intersection (), F; is also closed.
J
4 N
Theorem 2.4
For {O;}!"_,, a finite intersection (), O; is also open.
. J

Example 2.5

For an infinite intersection, {(—%, %)}neN consists solely of the point 0, which is
closed in R.

Definition 2.6. We say that P is a limit point in a set S C R if for any € > 0, in an
open neighborhood of radius &, you can find a distinct point other than p.

Example 2.7
0 is the limit point of {2},cn.

Not every interval has a limit point; think of {%}nGN in Q.

Definition 2.8. A set is closed iff it contains all of its limit points.
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Example 2.9

There are clopen sets (think of R, also )), also sets that are neither closed nor open
(think of (0, 1], for example).

Example 2.10

Is Q closed? Think of the sequence that goes to v/2, whose elements are all rationals,
yet its limit point is irrational. Hence, Q is not closed.

Definition 2.11. We call a set A to be disconnected in R if one can find two disjoint
U,V in R such that ANU # @ and ANV #Pand A= (ANU)U(ANTV).

Example 2.12
Q is disconnected; for example, consider U = (—o0,v/2) and V = (/2, 00).

Example 2.13

The cantor set C' is disconnected; for example, think of %

Example 2.14

In R, only an interval is connected. The empty set is not.

Definition 2.15. The closure S of a set S in R is the smallest closed set that contains S.

Example 2.16
The closure of Q is R.

Example 2.17
The closure of [0,1) is [0, 1].

Definition 2.18. A set S is dense in R if its closure equals R.

Example 2.19
Q is dense in R.

Definition 2.20. A set S is dense in Rif Vo € R, V6 > 0, (x — §, 24+ 0) NS # 0.
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Example 2.21

The cantor set C' is not dense in [0, 1]. Actually, it is nowhere dense in [0, 1]. Every
single time you decrease the maximum length of any interval by %, hence for any
open subset it is not dense.

Definition 2.22. We call a set S C X nowhere dense in X if S is not dense in any open
subset of X.

Definition 2.23. A set S is sequentially compact if for any sequence {s;} where s; € S,
{si} contains a convergent subsequence.

Theorem 2.24 (Bolzano-Weierstrass theorem)

In R™, a set S is sequentially compact if and only if it is closed and bounded.

Exercise 2.25. Show that the order topology on Q is disconnected.

Proof. Consider v/2, and the two open intervals adjacent to them. They are disconnected.
Hence we are done. O

Exercise 2.26. Let f : X — Y be continuous, and X’ C X. Show that if f' = f|x, then
f is continuous.

Definition 2.27. Let (X, 7) be a topology. We say X is separable if 3V C X and
Y| <|NJ| such that ¥ = X.

Exercise 2.28. R" is separable.
Exercise 2.29. If X,Y are separable, then X x Y is separable.

Definition 2.30. Let (X,7x) and (Y,7y) be topological spaces. Then, the product
topology, denoted as X x Y, is the smallest topology such that U x V' is open for U < 7x
and V < 1y.

Exercise 2.31. Let U,V be closed in X,Y respectively, then U x V is closed in the
product topology.

Exercise 2.32. Let f: X — Y and ¢g: X — Z be continuous. Then, show that f x g is
continuous, where f X g: X =Y x Z and = — (f(z), g(x)).

Exercise 2.33. Show that f : X — Y is continuous iff for V closed in Y, f=%(V) is
closed.

Exercise 2.34. Let X’ C X, Y’ CY, then show that X’ x Y’ is same as the subspace
topology on X x Y of X’ x Y.

Exercise 2.35. Show that [a,b) is in the Borel o-algebra.

Exercise 2.36. Find the cardinality of the Borel o-algebra.

§3 Topological spaces

Definition 3.1. A topological space (X, 7) is a set X equipped with a topology .
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Definition 3.2. A topology 7 is a set of subsets of X that satisfies the following properties:
1. {0, X} Cr.
2. Arbitrary union: (J;c; Xs €7

3. Finite intersection: (", X; € 7.

Example 3.3

For elements A, B, C, we define 2{A-5:CY = [, {A},{B},{C},...,{A,B,C}}.
Then, {{A, B,C},0} is called the trivial topology.
Moreover, 2{4:B:C} is called the discrete topology.

Example 3.4

The set S = {(—00,b), (00, ), (a, ), (a,b) | a,b € R} has a topology 7. (We define
(a,b) =0 if b < a.) We call this the standard topology on R.

Definition 3.5. A topological space (X, 7) is called a metric space if it has a metric
d: X x X - R2Y.

L. d(z,y) =0 <= z=y
2. d(z,y) =d(y,z) VYax,yeX
3. d(z,y) <d(x,z)+d(z,y) Vz,y,z € X (triangle inequality)

We denote such a metric space as (X, d).

Corollary 3.6

A metric induces a topology 7, where 7 is the smallest set which contains all open
balls Bx(r) under finite intersection and arbitrary union, where By (r) := {(x,y) |
d(x,y) < r} for x,y € R™.

Definition 3.7. C*[0,1] is defined as the set of continuous functions on the closed
interval [0, 1] with a continuous &*" derivative. We denote C°[0,1] = C|[0,1], i.e., the set
of continuous functions on the closed interval [0, 1].
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Example 3.8

Here are some examples of metric spaces:
e d(z,y) = |r — y| is a metric.

, Uz y)
1+d(z,y)

e For f,g € C[0,1], then

is a metric if d(z,y) is a metric.

1
atr9)= [ If ~gldo
is a metric.

e The discrete metric

1 ife#y
d(ac,y):{o ife=y

Definition 3.9. A metric space (X, d) is complete if all Cauchy sequences necessarily
converge.

4 N\
Theorem 3.10

Each metric space has a completion. That is, for all metric spaces (X, d), there

exists a metric space (Y, d) where Y is complete.
. J

Example 3.11
Q C R. (R is the completion of Q.)

4 N
Theorem 3.12 (Baire category theorem (BCT))

For any metric space (X,d), a countable set {X;}>°,, X; C X, and X; being an
open dense set in X, we have

[o.¢]
ﬂ X, is dense in X
i=1

A metric space with this property is called a Baire space.
. J

Proof. For an open subset W C X, we may construct a closed ball E(xl, r) CXhinNnW,
since we may take its radius to be slightly smaller than its open counterpart, which
always exists. Then, for all n > 2, B(2n,yn) € Xpn N B(zp_1,75_1) for 0 <r, < %, that
is, we construct a decreasing sequence of closed balls. Then, consider {B(z;, y;)}52;, then
because X is a complete metric space, the sequence is Cauchy thus convergent, and the
sequence {y;} — y has its limit point y € X residing in each of the closed balls. Hence,
ye (NXi)NW, so {X;}2, is dense in X, and we are done. O
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Corollary 3.13

Liouville’s approximation theorem can be proved via Baire category theorem.

Definition 3.14. A o-algebra (X, ) on a set X is a nonempty collection ¥ of subsets
of X with the following properties:

{0, X} CcX

closed under countable unions

e closed under countable intersections
e closed under complement

The ordered pair (X, ¥) is called a measurable space.

84 Cardinalities and Equinumerosity

Definition 4.1. A set X is countably infinite if there is a bijection between X and N.

Theorem 4.2 (Cantor-Schroder-Bernstein theorem)
VXAf : X — 2% such that f is surjective.

Proof. Let f: X — 2% be a surjective function.
Let AC X st. A={zeX |z ¢ f(x)}.
Hence, Jy € X such that f(y) = A, which implies f(y) ={z € X |z & f(x)}.
We divide cases into whether y is in the RHS.
If y € f(y), then y € f(y) = A by the given equation, contradiction.
If not, then y € f(y) = A, contradiction.
Thus, we are done. ]

I Remark. Axiom of choice.

Example 4.3
3f:N - R, i.e., that f is surjective.

Definition 4.4. Let X,Y be sets. | X| < |Y| means there is an injection from X — Y.
Here, the binary operation < is a total order.

Example 4.5 (Beth numbers)

We may create the sequence of sets |N| < |R = 28| < |2B| < [22°| < ...
The sequence of beth numbers is defined by setting 3y = R and Jxq = 2.
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Theorem 4.6
If | X| <|Y|and |Y| < |X], then | X| = |Y].

Definition 4.7. We define an orbit orb(z) of an element x € X to be the set of all the
elements we get when we apply a function f : X — X n times or undo a function n
times. Formally, orby(z) = {z} U {f™(x)} U{f"()}.

Proof. Note that f: X — Y and g: Y — X are both injective. Consider fog:Y — Y
which is injective. Let y € Y. Then, we have

orbrog(y) = {yt U{(fog)" (W)} U{(fog) ")}

and
orbgor(x) = {z} U{(ge f)"(x)} U{(ge f)"(x)}
How does orb(y) and orb(g(y)) relate? Take Axiom of Choice for each orbit, then
inject. O
Exercise 4.8. Prove |C]0,1]| < |R|.

Proof. Let f € C[0,1]. For some z € [0,1] s.t. g(z) # f(z) and ¢g € C[0,1], consider
"= florp,) and ¢’ := glgnp,1) and f* = ¢'. But if there exists a sequence a, —
s.t. f(an) — f(z) and g(ay,) — g(x), then at some point they must differ, otherwise
f(z) = g(x), which is a contradiction. Thus, |C[0,1]| < |R?|. Hence, ISTS |R?| = |R|.

But we have [RQ| = |(280)N0| = |2R0xRo| = |2%0| = |R|. O
Exercise 4.9. Let = be countably infinite. Prove |z*| = |2%|.
Proof. We have |z| = Rg. Now, |27| = |[Ro™0| = |2%°|, so we are done. O

8§85 Sequences and series

Definition 5.1. We say {a, }°°; converges to a limit a if Ve > 0, 3N such that d(a,,a) <
e Vn>N.

Theorem 5.2
If a;, — a and b, — b, then a,, + b, — a + b.

Proof. Let € > 0.

Then, because a,, converges to a, 3Ny such that d(a,,a) <§ Vn > Ny.

Similarly, because b, converges to b, 3N, such that d(b,,b) < § Vn > Na.

Observe that d(an,a) + d(bn,b) > d(an + by,a + b) by the triangle inequality, so
d(ap +bp,a+b) <e/24+¢/2=¢c VYn > max(Ni, Na).

Hence, a,, + b, converges to a + b. O

Theorem 5.3
If a;, — a and b, — b, then a,b,, — ab.
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Proof. Let € > 0.

Then, because a,, converges to a, N7 such that d(a,,a) <§ Vn > Ny.

Similarly, because b, converges to b, INa such that d(b,,b) < § Vn > Na.

Observe that d(anby,ab) = d((a — ap)(b — by), a(b, — b) + ala, —a)) < d((a — an)(b—
bn),0) + d(a(b, —b),0) + d(b(a, — a),0) by the triangle inequality, so d(a,by,,ab) <
e VYn> maX(Nl,Ng).

Hence, a,b, converges to ab. O

Theorem 5.4
If a,, — a and b, — b (with b, # 0 and b # 0), then a, /b, — a/b.

Proof. Similar to above. O

Definition 5.5. A sequence {a,}>2 is said to be Cauchy if Ve > 0 3N s.t. Vn,m > N,
d(ap,am) < €.

Theorem 5.6 (Cauchy implies convergence)

Let {a,}52; be Cauchy, then a,, converges.

Proof. Next class. O

Theorem 5.7 (Convergent sequences are Cauchy)

Let {a,}9; be a convergent sequence, then a,, is Cauchy.

Proof. Obvious. O

86 Fourier series

Definition 6.1 (Length of a curve). Let f : [0,1] — R™ be continuous.
Then, we define

len(f) lim Z | f(div1) — f(di)|

(d¢+1 7di)~>0

Definition 6.2. Let f : R — R be a periodic function with period 7, i.e., f(x +7) =
f(z) V.

Consider the complex integral

21 [T —ing2r

Cn = — e f(¢)do
then we have the following identity

f(0) — ZeinHCn

neL

If 3,7 len]? < 00, then equality actually holds.
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4 )
Theorem 6.3
Let f:]0,27] — R be a continuous function. Then,
Ve >0 3dg € R[z] s.t. d(g, f) < ¢
\- J
[
Theorem 6.4
If £(0) = f(27), then Ve > 0 g € span(e’™) s.t. d(g, f) < e.
- J

Definition 6.5. A perfect set is a closed set without isolated points.

Definition 6.6. We say x € X is isolated if for X C S, 9O open in S such that
ONX ={z}.

Example 6.7

There does not exist an isolated point in Q.

Example 6.8

The Cantor set is a perfect set.

Definition 6.9. We say a set is totally disconnected if the “largest” connected set is a
single point.

Definition 6.10. For a subset X with respect to the parent set Y, we say that X has a
subspace topology 7 in Y where 7 ={ONX | O openin Y} for O CY and O C X.

Exercise 6.11. Verify that 7 is a topology in X.

4 N\
Lemma 6.12
Let Y have topology 7. Let X CY and 7, = {ONX | O € 7}. Let {u;} C 7. We
have u; = O; N X for O; € 7. Then, U;c;wi = [U;je; Os]) N X. Let w,v € 7.
It suffices to show that UNV € 7,. Then, U = O1NX and V = O, N X, so

UNV =(01N0O02)N X, hence we are done.
J

4 N\
Theorem 6.13

Every nonempty perfect set X C R (or some other complete metric space) is
uncountable.

J

Proof. We proceed with proof by contradiction. Assume there existed a countable perfect
set, denoted as {z;}32;.

Then, take an open set in R by taking a cut on some point z;, i.e., § = {x;} \ z;, then
for any x;, S is open with respect to the subspace topology.

10
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Lemma 6.14

For {z;} C R and any x; € {z;}, the set {x;} \ z; is dense in {z;} with respect to
the subspace topology of {x;}.

Proof. Take any open, nonempty, dense set in {x;}. Then, we have O N {z;} \ z; # 0.
But then {;} has no isolated point as a subset in R. O

Then, ﬂ ({z:} \ z;) is dense, but it is (), contradiction. O

§7 Uniform continuity

Example 7.1
A pathological example: let f,(z) = 2", then f,(z) is continuous for all n € N| yet
0 if 1
lim f,(z) = { S

n—oo

1 ifz=1

is not continuous on [0, 1].

Definition 7.2 (Uniform continuity for a series of functions). Let {f,}>2; be a sequence
of functions, then f,, is uniformly continuous if and only if f := lim,_,~ fn where f is
continuous.

Definition 7.3 (Uniform continuity). A function f is called uniformly continuous if for
every real number € > 0 there exists a real number § > 0 such that for every z,y € X
with di(x,y) < §, we have da(f(z), f(y)) < e.
For each x, the set
{ye X :dy(x,y) < d}

is a d-neighborhood of x.

Definition 7.4 (Bounded in a metric space). A set X is bounded iff Vz,y € X, IM > 0
such that d(x,y) < M.

Theorem 7.5 (Heine-Cantor theorem)

A continuous function on a compact set is uniformly continuous.

Definition 7.6 (Supremum norm). Define the supremum norm of two functions f, g €
C10,1] as
d(f,g) == sup |f(z) —g(z)|
z€[0,1]
Definition 7.7. Let

Anm ={f € C[0,1] | 3z € [0,1] such that ‘w

1
<nift—z<—}
—x m

e.) oo
Denote Dy to be the set of differentiable functions. Then, Dy C U U Ap m, that is,

n=1m=1
every differentiable function f is in A, ,,.

11
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Definition 7.8. A set E is meager if it can be written as a countable union of nowhere
dense sets. A set E is nonmeager if it is not meager. A set E is comeager if EC is meager.

§8 Pathological functions

Example 8.1 (Weierstrass function)
oo

Let f(z) = Zak cos(b¥rz), where 0 < a < 1 and ab > 1+ 3x. This function is
k=1

continuous everywhere, yet differentiable nowhere.

Example 8.2 (Devil’s staircase)

Discussed in detail in Cantor functions.

Example 8.3
1 ifzelR

Let f(z) = 1 v /Q. Then, f is not Riemann integrable but is Lebesgue
0 ifzeQ

integrable.

Example 8.4
o0

Let fn(z) = Z 1 Then, f is uniformly continuous on R — {i}oo

" nzol—i—n%' ’ n2n=l
Example 8.5

3f € L'(R) whose Fourier series does not converge at any point.

Example 8.6

3f € C[R] that is continuous yet nowhere monotone. Take f be the Weierstrass
function.

12
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