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The multifarious Cantor set

Jiwu Jang

June 14 – July 20, 2023

This is a note on a series of lectures on Cantor sets, given by Prof. Vitaly Bergelson,
accompanied by various “What is . . . ?” seminars at Ohio State University.

§1 Cantor set

Definition 1.1. The Cantor set C is created by iteratively deleting the open middle
third from a set of line segments.
One starts by deleting the open middle third

(
1
3 ,

2
3

)
from the interval [0, 1], leaving

two line segments:
[
0, 13
]
∪
[
2
3 , 1
]
.

Next, the open middle third of each of these remaining segments is deleted, leaving
four line segments:

[
0, 19
]
∪
[
2
9 ,

1
3

]
∪
[
2
3 ,

7
9

]
∪
[
8
9 , 1
]
.

The Cantor set contains all points in the interval [0, 1] that are not deleted at any step
in this infinite process.

Formally, we define C :=
∞⋂
i=1

Ci where Ci is the set after each iteration.

Definition 1.2. We define {0, 1, 2, . . . , r − 1}N to be the set of all infinite sequences
(xn)n∈N with entries from {0, 1, 2, . . . , r − 1}.

Definition 1.3. Alternatively, we define

C :=

{ ∞∑
i=1

ti
3i
| ti ∈ {0, 2}

}
that is, we take all ternary expansions of the number x ∈ [0, 1] whose digits only consist
of {0, 2}. Hence, by Cantor’s diagonalization argument, C is uncountable.
In other words, |C| = |{0, 2}N| = |2N| = |R|.
Moreover, there is a natural map between C ∼= {0, 2}N, where x ∈ C if and only if there

exists a ternary expansion of x that only uses the digits 0 and 2, and if there are multiple
ternary expansions, then at most one can only use the digits 0 and 2.

Definition 1.4. We say a set S is countable if a bijection can be formed between the
sets S and N.

Theorem 1.5

Z× Z is countable. (Thus, Q is countable as well.)

Proof. Consider the spiral walk starting at (0, 0), visiting every element in the lattice
plane. Thus, we have formed a bijection.
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Theorem 1.6 (Cantor’s diagonalization method)

C is uncountable.

Proof. Assume for the sake of contradiction that C was countable.
Then, we may write down the elements in C as follows:

C =


a11a12a13 . . .

a21a22a23 . . .

a31a32a33 . . .
...

Consider ã11, ã22, . . . where each ãii is the “flip” of aii. Then, the flipped sequence
cannot appear anywhere in our table, because it must meet with the diagonal, yet when
they meet the digits differ, contradiction.

§1.1 Exercises and Problems

Definition 1.7. For a binary operator ∗, define C ∗ C := {x ∗ y | x, y ∈ C} where x ∗ y is
properly defined. (e.g. no division by zero.)

Exercise 1.8. Show C + C = [0, 2] and C − C = [−1, 1].

Proof. For C + C, let S = {x+ y | x, y ∈ C/2}, and note that

S = {x+ y | x =
∞∑
i=1

ai
3i
; y =

∞∑
i=1

bi
3i

where ai, bi ∈ {0, 1}}

but for each digit of x+ y, we have {0, 1}+ {0, 1} = {0, 1, 2}, thus we can represent every
number in [0, 1], since every number in [0, 1] has a base-3 expansion 0.c1c2 . . .(3) where
ci ∈ {0, 1, 2}. Hence, S = [0, 1]. Now, simply multiplying each element in S by two gives
C + C = 2S = [0, 2], and we are done.
For C − C, the statement is very similar, but we shall perform the balanced ternary

expansion. Let S = {x− y | x, y ∈ C/2}, and now note that

S = {x− y | x =
∞∑
i=1

ai
3i
; y =

∞∑
i=1

bi
3i

where ai, bi ∈ {0, 1}}

but for each digit of x+ y, we have {0, 1} − {0, 1} = {−1, 0, 1}, thus we can represent
every number in [−1

2 ,
1
2 ], since every number in [−1

2 ,
1
2 ] has a balanced base-3 expansion

0.c1c2 . . .(3) where ci ∈ {−1, 0, 1}. Hence, S = [−1
2 ,

1
2 ]. Now, simply multiplying each

element in S by two gives C − C = 2S = [−1, 1], and we are done.

Problem 1.9. Show C · C = [0, 1] and C/C = R≥0.

Proof. For C · C, we have {0, 2} · {0, 2} = {0, 2, 4}, but in modulo 3 it is equivalent to
{0, 1, 2} except for the fact that it adds a carry; but that can be handled with induction
until the kth digit, so C · C = [0, 1] since it includes every base-3 expansion of elements in
[0, 1].
For C/C, intuitively, although C does not produce every real number in [0, 1], for a

given positive real number r, we may create a sequence that approximates and converges
to r, by “enhancing the approximation” in every step of adding another digit. (We should
formalize this notion.)
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Exercise 1.10. Show that 1
4 ∈ C.

Proof. We have
1

4
= 2

( ∞∑
k=1

1

9k

)
, thus we are done.

Exercise 1.11. Show that 1√
2
/∈ C.

Problem 1.12. Is there a quadratic irrational in C?

Exercise 1.13. Prove that |[0, 1]| = |R|. We say that [0, 1] is equinumerous with R.

Proof. Use tan−1((x− 1
2)π) to create a bijection between (0, 1) and R, then since |[0, 1]| =

|(0, 1)| because (0, 1) only excludes two points 0 and 1, conclude.

Exercise 1.14. Prove that |[0, 1]× [0, 1]| = |[0, 1]|.

Proof. Consider two arbitrary numbers in [0, 1], let them be a and b. Then, take
the binary expansion of a = 0.a1a2a3 . . . and b = 0.b1b2b3 . . . . Moreover, send it to
c = 0.a1b1a2b2a3b3 . . . , and take the canonical representation only. Thus we formed a
bijection, and we are done.

Exercise 1.15. Prove that |[0, 1]| = |R× R|.

Proof. By the previous two exercises, we are done.

§2 Properties of C
Here are some properties of C:

1. C is closed. (Intersection of arbitrarily many closed sets is closed.)

2. C is nowhere dense. In particular, C does not contain [a, b] for some 0 ≤ a < b ≤ 1.

3. C is “arithmetically large”.

4. C has measure zero (
∫
C dµ = 0), since its complement has measure one.

5. C is uncountable. (|C| = |R| = |[0, 1]|)

Remark. C is large in some senses, but is also small in other senses.

Definition 2.1. A Borel set is any set in a topological space that can be formed from
open sets (or, equivalently, from closed sets) through the operations of

• countable union

• countable intersection

• relative complement (with respect to the parent set)

Definition 2.2. For a topological space X, the collection of all Borel sets on X forms a
σ-algebra, known as the Borel σ-algebra, often denoted as B. The Borel σ-algebra on X
is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).
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Theorem 2.3

We have C ∈ B, where B is the Borel σ-algebra.

Proof. C is a countable intersection of closed sets Ci, and thus C is closed. Hence C ∈ B
by definition of a Borel set.

Theorem 2.4

The set of algebraic numbers is countable, hence there exists transcendental numbers
in R and beyond. (e.g. π and e are transcendental.)

Proof. This follows from some observations:

1. The union of countably many countable sets is countable. (e.g. Z× Z)

2. Fix degree d ≥ 0, and consider Sd, which are the set of all possible roots of degree
d polynomials with integer coefficients.

3. The polynomial adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 ∈ Z[x] for ad ̸= 0 has at most d
roots (Fundamental Theorem of Algebra).

Now, since each coefficient is countable, the union of countably many such set of
coefficients is countable, hence Sd is countable as well.

§3 Devil’s staircase function

Definition 3.1. The Cantor function, also known as the “devil’s staircase function”,
is defined on the complement of Cantor set in [0, 1], then extended by “filling in” the
removed intervals by continuity.
Formally, the Cantor function c : [0, 1]→ [0, 1] is defined as

c(x) =


∞∑
n=1

an
2n

, x =

∞∑
n=1

2an
3n
∈ C for an ∈ {0, 1};

sup
y≤x, y∈C

c(y), x ∈ [0, 1] \ C.

Definition 3.2. A set S ⊆ R has measure zero if ∀ε > 0, it can be covered by a finite or
countable family of intervals I with total length < ε.
Formally, ∀ε > 0, ∃ I = {I1, I2, . . . } where Ii ⊂ R s.t. S ⊆

⋃
I∈I I and

∑
I∈I |I| < ε

where |I| denotes the length (and measure) of interval I.

Example 3.3

Q has measure zero.

Proof. Let Q = {r1, r2, . . . } since Q is countable.
Then, for some intervals Ji such that ri ∈ Ji, we have |Ji| < ε

2i+1 .
Thus,

∑
|Ji| < ε for all ε > 0.

Hence, Q has measure zero.
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Example 3.4

C has measure zero (which we previously handwaved this by saying that its comple-
ment is of length 1).

Proof. Because C ⊆ Ci, we may consider the measure of the interval Ci: observe that the
total length of Ci is bounded above by ε = 1

3i
, hence µ(C) = 0.

Here are some properties that the Cantor function c(x) satisfies:

1. c′(x) = 0 almost everywhere, meaning that {x | c′(x) = 0} is of measure zero.

§3.1 Exercises and Problems

Exercise 3.5. Prove that the arc length of c(x) is 2.

Proof. Since c(x) is continuous on [0, 1], by using the triangle inequality, we get that the
arc length of c(x) is at most 1 + 1 = 2.

Now, the union of the segments for which c′(x) = 0 is of measure 1, and for every other
point for which the derivative is not defined, i.e., x ∈ C, we project it to the y-axis. Then,
since each projected number on the y-axis is

∑∞
i=1

ai
2i

where ai ∈ {−1, 1}, it is equivalent
to [0, 1]. Hence, the arc length is at least 2.
Thus, the arc length of c(x) is 2.

Exercise 3.6. Show that it does not matter if we choose Jτ to be open, closed, half-open,
or half-closed.

Proof. Changing a side of an interval from closed to open excludes only one point, which
has measure zero, so the result follows.

Exercise 3.7. Define (carefully) the notion of µ = 0 in Rn and show that all reasonable
definitions are equivalent.

Definition 3.8. We say that a set S ⊆ Rn has measure zero, denoted as µ(S) = 0, if
∀ε > 0, ∃B = {B1, B2, . . . } where Bi ⊆ Rn s.t. S ⊆

⋃
B∈B B and

∑
B∈B |B| < ε where

|B| denotes the measure of the open ball B.

Exercise 3.9. c′(x) is zero on a measure 1 subset of [0, 1]. In particular, it is 0 on the
interior of the complement of C.

Proof. Because µ(A) = µ(A−B) + µ(B) for any measurable sets A and B, we have

µ([0, 1]) = µ([0, 1]− C) + µ(C)

hence 1 = µ([0, 1]− C) + 0, but c′(x) = 0 for all x ∈ [0, 1]− C, thus we are done.

Exercise 3.10. Prove that

∫
[0,1]

c′(x) dµ = 0.

Proof. The derivative of the Cantor function, denoted as c′(x), exists almost everywhere
and is zero almost everywhere, except for the Cantor set, where it is undefined.
To find the integral of c′(x) over [0, 1], we need to consider the Lebesgue integral. The

Lebesgue integral takes into account the measure of sets when integrating functions.
Since c′(x) is zero almost everywhere, we can consider the integral over the complement

of the Cantor set. Let’s denote the complement of the Cantor set as A.
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Then, µ(A) = µ([0, 1])− µ(C) = 1 since A is the entire interval [0, 1] \ C and µ(C) = 0.
Now, integrate c′(x) over A, that is,∫

A
c′(x) dµ =

∫
A
0 dµ = 0

hence, ∫
[0,1]

c′(x) dµ =

∫
A
c′(x) dµ = 0

and we are done.

Remark. The function f ′ is certainly not Riemann-integrable, since it is undefined at the
Cantor set.

Exercise 3.11.

1C =

{
1 if x ∈ C
0 if x ̸∈ C

is Riemann-integrable.

Exercise 3.12. For any countable set S ⊆ R, there exists a monotone function f : R→ R
such that the set of its discontinuities is S.

Exercise 3.13. Most continuous functions are nowhere differentiable.

Remark. Monotone functions are much better than general continuous functions.

Exercise 3.14. Any monotone function f : R→ R is differentiable almost everywhere.

§4 Metric spaces

Definition 4.1. A set X ≠ ∅ is called a metric space, if there is a metric d : X ×X →
[0,∞) such that

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X (triangle inequality)

6
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Example 4.2

Here are some examples of metric spaces:

• Any set X equipped with the discrete metric

d(x, y) =

{
1 if x = y

0 if x ̸= y

• X = C[0, 1] equipped with the metric

d(f, g) = max
x

(f(x)− g(x))

(C[0, 1] denotes the set of all continuous functions f : [0, 1]→ R)

• X = Rn, equipped with the metric

dp(x, y) =
p

√√√√ n∑
i=1

|xi − yi|p

for sequences x = (x1, x2, . . . ) and y = (y1, y2, . . . ) where p ∈ [1,∞). (note
that we do not include p =∞, which we define below.)

• X = Rn, equipped with the metric d∞(x, y) = max
1≤i≤n

|xi − yi|.

• ℓ2 = {(x1, x2, . . . ) | xi ∈ R ∀i ≥ 1 and
∑∞

i=1 |xi|2 < ∞} equipped with the
metric

d(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2

• X = {0, 1}N, equipped with the metric

d(x, y) =
∞∑
i=1

|xi − yi|
2i

where x, y ∈ {0, 1}N. (the p-adic metric.)

§4.1 Exercises and Problems

Exercise 4.3. Prove that limp→∞ dp = d∞.

Proof. Let ai = |xi − yi| and a = maxni=1 ai, then dp > a and dp < (apn)
1
p = an

1
p , and

thus limp→∞ dp = a by the squeeze theorem, so limp→∞ dp = d∞.

Exercise 4.4. Prove that dp is indeed a metric on X = Rn.

Proof. Use Minkowski’s inequality to prove that dp satisfies the triangle inequality; other
properties are easy to show. (Fun exercise, try deriving Minkowski’s inequality from
Hölder’s inequality.)

Exercise 4.5. Is there ε > 0 such that C ∩ (C − ε) ̸= ∅ for ε < 1
2?

7
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Proof. We may shift everything by ε = 2
32
, which would obviously lend some numbers to

be in the intersection, hence we are done.

Theorem 4.6

A function f : [0, 1]→ R is Riemann-integrable if and only if it is bounded and the
set of discontinuities of f has measure zero.

Exercise 4.7. Prove that any monotone function has at most countably many disconti-
nuities.

Exercise 4.8. Prove that any continuous function is Riemann-integrable.

Exercise 4.9. Show that any monotone function is Riemann-integrable.

Exercise 4.10. Prove that there exists a strictly monotone function f : [0, 1] → [0, 1]
such that f(0) = 0, f(1) = 1, and f ′(x) = 0 for almost every x ∈ [0, 1].

Proof. Let φ be a generalized Cantor step function. Take

f(x) = c ·
∞∑
i=1

φ(nx)

2n

where f(0) = 0 and

f(1) = c ·
∞∑
i=1

φ(n)

2n

where c is such that f(1) = 1. Then,

f ′(x) =

(
c ·

∞∑
n=1

φ(nx)

2n

)′

= c ·
∑ n · φ′(nx)

2n

by little Fubini’s theorem. For x1 < x2, pick n such that nx1 and nx2 lie on different
unit intervals, then φ(nx1 + 1) ≤ φ(nx2), so we are done.

Problem 4.11. Is there a continuous yet nowhere monotone function?

Remark (Musings). An example of a continuous yet nowhere differentiable function is the
Weierstrass functions f :=

∑
an sin(bnx).

Definition 4.12. Two metric spaces (X1, d1) and (X2, d2) are isometric if ∃φ : X1 → X2

such that ∀a, b ∈ X1,
d2(φ(a), φ(b)) = d1(a, b)

Remark. Isometry is the simplest form of isomorphism. (There are other types of isomor-
phisms as well.)

Definition 4.13. We say two sets X1 and X2 are homeomorphic if ∃φ : X1 → X2 s.t. φ
is bijective and bicontinuous (i.e., φ is continuous, and its inverse is also continuous).

8
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Corollary 4.14

Homeomorphisms preserve limits, that is,

φ(lim an) = lim(φ(an))

φ−1(lim bn) = lim(φ−1(bn))

where (an) ⊆ X1 and (bn) ⊆ X2.

Example 4.15

[0, 1] and R are homeomorphic, since we may consider the ray from the half circle to
the real line, where maps are bijective and bicontinuous.

Example 4.16

(0, 1) and [0, 1] are not homeomorphic, since [0, 1] is compact while (0, 1) is not.

Example 4.17

({0, 1}N, d) ∼ C, since ∃φ : C → {0, 1}N such that 0 7→ 0 and 2 7→ 1, which preserves
the distance metric between C ∼ {0, 2}N ∼ {0, 1}N (hence they are homeomorphic).

Example 4.18

Let (X, d) be a metric. ThenX can be given a topology via Br(x) := {y | d(x, y) < r}
is open ∀r ∈ R+ and x ∈ X.

Definition 4.19. A topological space is Hausdorff (T2-separable) if ∀x, y ∃U1 ∋ x, U2 ∋ y
such that U1 ∩ U2 = ∅.

Exercise 4.20. For a compact Hausdorff topology, one cannot remove or add points and
preserve both compactness and Hausdorff.

Exercise 4.21. Prove that if X,Y are Hausdorff, then X × Y is also Hausdorff.

Exercise 4.22. Find a topology τ of R such that ∀f : R → R, f is continuous under
Rτ → Rstandard.

Take τ = 2R.

Exercise 4.23. Find a topology τ of R such that ∀f : R → R, f is continuous under
Rstandard → Rτ .

Take τ = {∅, X} (the trivial topology).

Exercise 4.24. Prove that if {Ai}∞i=1 is a family of |R| sets, then |
⋃
Ai| = |R|.

Exercise 4.25. Let π1 : X × Y → X via (x, y) 7→ x. Show that π1 is continuous. Define
π2.

Proof. Let U ⊆ X be open. Then, π−1(U) = {(x, y) | x ∈ U} = U × Y , which is
open.

9
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Theorem 4.26

Let (X, τ) be a topology of a metric space. Then, the following two definitions of
compactness are equivalent:

• Let A ⊆ X such that |A| =∞. Then A has a limit point.

• Let {xi}∞i=1 ⊆ X, then ∃ik where k ∈ N such that xik converges to x ∈ X.

Definition 4.27. Consider the function f(x) = λx(1− x) where λ > 4. We delete the
interval of x such that f(x) > 1. Repeat this iteration infinitely many times, and observe
the part that still remains. We call this the generalized Cantor set, denoted as Cλ.

Example 4.28

The classical middle 3rd Cantor set C is actually C 9
2
.

Exercise 4.29. Prove that the generalized Cantor set Cλ has measure zero, ∀λ > 4.

Proof. Denote the measure of the deleted open intervals in the nth iteration as an. Then,
for the first iteration, we delete the interval1−

√
1− 4

λ

2
,
1 +

√
1− 4

λ

2


which is of measure

√
1− 4

λ , which we denote as k. Then, since k is also the proportion

of the measure of the deleted interval over the entire interval [0, 1], we have a1 = k,
a2 = 21 · 1−k

2 · k, and in general,

an = 2n−1k

(
1− k

2

)n−1

= k(1− k)n−1

But then,
∑∞

n=1 an = 1 regardless of k, hence the complement of the deleted intervals,
which is precisely Cλ, has measure zero.

Exercise 4.30. Prove that all such generalized Cantor sets are homeomorphic to the
classical middle 3rd Cantor set.

Proof. The nth iteration generates exactly 2n boundary points, all of which are totally
disconnected; hence we may form a bicontinuous bijection between each point in the
Cantor set C and the generalized Cantor set Cλ.

§5 Perfect sets

Definition 5.1. A point x is called an isolated point of a subset S (in a topological space
X) if x is an element of S and there exists a neighborhood of x that does not contain
any other points of S.
This is equivalent to saying that the singleton {x} is an open set in the topological

space S (considered as a subspace of X).
Another equivalent formulation is the following: an element x of S is an isolated point

of S if and only if it is not a limit point of S.

10
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Definition 5.2. A subset of a topological space (X, τ) is said to be perfect if it is closed
and has no isolated points.

Definition 5.3. A totally disconnected space is a topological space that has only singletons
as connected subsets.
In every topological space, the singletons (and, when it is considered connected, the

empty set) are connected; in a totally disconnected space, these are the only connected
subsets.

Example 5.4

The Cantor set C is a perfect set, but is also totally disconnected.

Example 5.5

Other examples of perfect subsets of the R are the empty set, all closed intervals,
and R itself.

§6 Szemerédi’s theorem

Definition 6.1. Let E ⊆ Z. Define the upper density of E as

d(E) := lim sup
N→∞

|E ∩ {−N, . . . , N}|
2N + 1

and the lower density of E as

d(E) := lim inf
N→∞

|E ∩ {−N, . . . , N}|
2N + 1

Definition 6.2. When d(E) = d(E) = e, d(E) = e is the natural density of E.

Example 6.3

For E = Z, d(E) = 1.

Example 6.4

For E = nZ, d(E) = 1
n .

Example 6.5

For E =
⋃
n≥1

{j | 22n < j < 22n+1}, d(E) = 2
3 and d(E) = 1

3 , so d(E) is undefined.

Example 6.6

d and d are not additive. (Think of N − E and E in the previous example. They
clearly don’t add up.)

11
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Remark. However, d is sub-additive. Moreover, d is also invariant under translation.

Conjecture 6.7 (Erdös, Turán, 1936). If d(E) > 0, then E contains arithmetic progres-
sions of arbitrary length, i.e., ∀k ∈ N, ∃a ∈ E, b ∈ N where {a+mb | 0 ≤ m ≤ k} ⊆ E.

Theorem 6.8 (Szemerédi, 1975)

If d(E) > 0, then E contains arithmetic progressions of arbitrary length.

Example 6.9 (Szemerédi as a shift)

A ∩A− k ∩A− 2k ̸= ∅ =⇒ A contains {x, x+ k, x+ 2k}.

Definition 6.10. We define the indicator function

1A(n) =

{
1 n ∈ A

0 n ̸∈ A

This is linked to Cantor sets in the following way:

Remark. For any S ⊆ N, 1S(n) ∈ {0, 1}N ∼ C.

Theorem 6.11 (Furstenberg, 1977)

For E ⊆ Z, then ∃(X,B, µ, T ), where (X,B, µ) is a probability space and T is a
measure-preserving transformation, i.e., µ(T−1E) = µ(E) ∀E ∈ B. Then, ∃A ⊆ B
such that µ(A) = d(E) and

d(E − n1 ∩ E − n2 ∩ · · · ∩ E − nk) ≥ µ(T−n1A ∩ T−n2A ∩ · · · ∩ T−nkA) ∀ni ∈ Z

Theorem 6.12 (Riesz representation)

Any positive linear functional on C(x) where x is compact Hausdorff can be repre-
sented by integration with respect to some positive measure.

Theorem 6.13 (Gelfand representation)

If C is a commutative C∗-algebra with spectrum X, then ∃γ : C → C(x) which is
an isometric ∗-isomorphism.

Theorem 6.14 (Hahn-Banach)

If p : X → R is sublinear (where X is a vector space) and f : Y → R and X ⊇ Y
with f ≤ p, then ∃F : X → R s.t. F |Y = f , F ≤ P and F linear.

Proof. {E} is countable, so {E − n | n ∈ Z} is countable.

12
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Hence, Ξ = {E − n1 ∩ E − n2 ∩ · · · ∩ E − nk | ni ∈ Z, k ∈ N} is countable.
Take E′ ∈ Ξ, and define

L(1E′) = lim
i→∞

|E′ ∩ {−Ni, . . . , Ni}
2Ni + 1

We have L(1E′) ≤ d(E′), because we have a limit of a subsequence of the lim sup of
the original sequence.
Note that L is additive in 1Ξ in the sense of measure, that is,

L(E′ ∪ E′′) = L(E′) + L(E′′) for E′ ∩ E = ∅

Generate an algebra A generated by 1Ξ, and by Hahn-Banach, L extends to A.
By Gelfand, A ∼= C(x).
By Riesz, L =

∫
− dµ.

From µ(A) = d(E), we have µ(A) =
∫
1Adµ and d(E) = L(E), hence

∫
1Adµ = L(E),

which is true by diagonalization procedure.
Therefore,

d

(
k⋂

i=1

E − ni

)
≥ L

(
1⋂ i=1kE−ni

)
=

∫ ∏
1T−niAdµ

= µ(T−n1A ∩ T−n2A ∩ · · · ∩ T−nkA)

Corollary 6.15

Szemerédi’s theorem reduces to proving for any (X,B, µ, T ), A ∈ B, µ(A) > 0, and
∀k ∈ N, ∃m ∈ N s.t.

µ(A ∩ T−mA ∩ T−2mA ∩ · · · ∩ T−kmA) > 0

Proof. H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Sze-
merédi.”

A generalization of ergodic multidimensional Szemerédi is as follows:

Theorem 6.16 (Ergodic multidimensional Szemerédi)

For any (X,B, µ, T1, T2, . . . , Tk) where A ∈ B, µ(A) > 0, and Ti commuting, there
exists m ∈ N such that

µ(A ∩ T−m
1 A ∩ T−m

2 A ∩ · · · ∩ T−m
k A) > 0

From now on, consider A ⊆ Z, which does not change anything.
Let Ω = {0, 1}Z and σ : x(n)→ x(n+ 1).

Exercise 6.17. Prove that the underlying metric

d(x,y) :=
∑
i∈Z

|x(i)− y(i)|
2|i|

13
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is indeed a metric. (Intuitively, we compare a neighborhood centered around 0 between
two sequences.)

Exercise 6.18. Prove that σ is a homeomorphism of Ω.

Exercise 6.19. Prove that {0, 1}N and {0, 1}Z are homeomorphic.

Example 6.20 (Iterations of σ)

Consider the set XA = {σk(1A(n)) | k ∈ Z} ⊆ Ω = {0, 1}Z. (It’s an orbital closure,
which contains all of its limit points.)

Example 6.21

We have exactly two sets A = Z and A = ∅ such that XA is a singleton. We have
A = 2Z such that XA has two elements.

Exercise 6.22 (Bruce). Prove that XA is finite if and only if A is periodic.

Exercise 6.23. Classify when XA can be countable?

Definition 6.24. A word is a finitely many consecutive {0, 1}-digits.

Exercise 6.25. Prove that XA = Ω if and only if A (as a binary sequence) has any finite
binary word as a substring.

Definition 6.26. A word ω has correct frequency if the frequency of ω is 1
2|ω| .

Definition 6.27. ω ∈ Ω is normal if every subword has correct frequency. For conve-
nience, Ω = {0, 1}N.

Problem 6.28 (Champernowne). Prove that the constant c = 0.123456789101112 . . . is
decimal normal.

Theorem 6.29

For any integer polynomial f : Z→ N, the sequence

0.f(1)f(2)f(3) . . .

(where we concatenate digits) is normal.

Problem 6.30. Are most random sequences normal? What is the proportion of normal
random sequences?

Problem 6.31. Is 0.1491625364964 . . . normal?

Problem 6.32. Is 0.235711131719232931 . . . normal?

Problem 6.33. Is e = 2.71828 . . . normal?

Problem 6.34. Is π = 3.141592 . . . normal?

Problem 6.35 (Euler-Mascheroni). Is γ = 0.577215664901532 . . . normal?

14
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Theorem 6.36 (Borel)

The set of x ∈ [0, 1] whose binary expansions are normal has complement of measure
zero. (i.e., almost every x ∈ [0, 1] is normal in base 2.)

Exercise 6.37. The set of normal base 2 numbers in [0, 1] form a set of Baire category I.

Exercise 6.38. Is a base b normal sequence also normal in base b′, for b′ ̸= b?

Exercise 6.39. Prove that C is Borel-measurable.

Definition 6.40. B, by definition, is a σ-algebra of subsets of R, which is generated by
open sets. Equivalently, B is generated by intervals (a, b) where a, b ∈ Q.

Proof. (α, β) =
∞⋃
n=1

(an, bn) where an → α from the right and bn → β from the left, where

an, bn ∈ Q.

Proof. By definition, C is the complement of a certain open set in [0, 1], so by definition
C ∈ B.

Exercise 6.41. Prove that any open set in R is a disjoint union of open intervals.

Exercise 6.42. Prove that R is not homeomorphic to R2.

Exercise 6.43. What is |B|?

B is countably generated by real intervals (which is countably generated by rational
intervals), so a typical subset of R is not in B.

Exercise 6.44. Prove that not every subset of C is Borel.
That is, B ⊊ Lebesgue measurable sets.

Problem 6.45. Are there non Borel sets?

Problem 6.46. Give an example of a sequence fn : [0, 1]→ R of continuous functions
such that limn→∞ fn(x) exists for every x ∈ [0, 1]. How badly discontinuous of a function
can f(x) = limn→∞ fn(x) for x ∈ [0, 1] be?

Problem 6.47. Take all possible pointwise limits of functions from C[0, 1], which we
call B1 (for Baire). Do the same with functions from B1; call the new set of all possible
pointwise limits B2. Is it true that B1 ⊊ B2? Some examples?

Problem 6.48 (Smith-Volterra-Cantor). Construct sets which are homeomorphic to C,
but have positive measure. (Construct a Cantor-like set but with

∑
ln < 1.)

§7 Hausdorff-Banach-Tarski Paradox

The secret behind the paradox is different properties of isometry groups of R2 (denoted
G2) and R3 (denoted G3).

Theorem 7.1

G3 contains a free-subgroup, that is, a group isomorphic to F2 = ⟨a, b⟩.

15
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§7.1 Rotation matrices

In R2, the rotation matrix by φ radians counterclockwise is r =

[
sinφ − cosφ
cosφ sinφ

]
.

In R3, there are many pairs of 3× 3 matrices in G3 which generate a group isomorphic
to F2. Taking the compactification of F2 induces the Cantor set.

Remark. Many results in real analysis can be formulated in language which uses only the
notion of measure zero. As a rule, these results can be proved also in the framework of
measure zero only. Some instances of such principle are

• Criterion for Riemann integrability.

• Monotone functions are almost everywhere differentiable.

• Almost every x ∈ [0, 1] is normal in base 2.

Remark. We discuss different types of typicality in the sense of Baire category.

Exercise 7.2. Can a shifted Cantor set C + x with x ∈ R consist solely of irrationals?

A more generalized question:

Exercise 7.3. Let E ⊆ R, where λ(E) = 0. Is it true that for some x ∈ R, we have
(E + x) ∩Q = ∅?

§8 Smith-Volterra-Cantor sets

Theorem 8.1 (Smith-Volterra-Cantor)

Let a =
∑∞

i=1 ai, where ai > 0 and a ∈ (0, 1]. Delete the open intervals a1, a2,
. . . , akin to how we constructed the classical Cantor set. Let K :=

⋂∞
i=1 Ci. Note

that µ(K) = 1− a. Yet, K is homeomorphic to the classical Cantor set, since each
interval that we deleted is homeomorphic to the classical deleted interval; hence K
is a Cantor set.

Theorem 8.2 (Steinhaus)

If A ⊆ R with µ(A) > 0, then A−A contains an interval.

Exercise 8.3. Is it necessarily true that K − K contains an interval, for a = 1? (For
a < 1, since µ(K) = 1− a > 0, by Steinhaus, the problem is not of interest anymore.)

Solution. Not necessarily. Take a1 = 1, then K = {0, 1}, so K −K = {−1, 0, 1}, which
does not contain an interval.

Problem 8.4. What if we restrict ai < 1?

Example 8.5

Take Ĩn =
(√

2− 1
n ,
√
2 + 1

n

)
∩Q. Then,

∞⋂
k=1

Ik = ∅.
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Example 8.6

Take Ĩn =
(
2− 1

n , 2 +
1
n

)
∩ (R \Q). Then,

∞⋂
k=1

Ik = ∅.

Theorem 8.7 (Cantor et al.)

If I1 ⊃ I2 ⊃ . . . is a sequence of closed nested (nonempty) intervals in R, then

∞⋂
k=1

Ik ̸= ∅

By this, K is uncountable, since the process is itinerary for which Ci is closed for each
iteration.

Exercise 8.8. Is C × C a Cantor set?

Yes, R× R ∼= R.

Exercise 8.9. Is {0, 1, 2, 3}N a Cantor set?

Lengthen the sequence twice.

Exercise 8.10. Can you represent C as a finite disjoint union of n Cantor sets, for all n?

Proof. Take a left-right self-fractal.

Exercise 8.11. Can you represent C as a countable disjoint union of Cantor sets?

Proof. Yes.

Exercise 8.12. Can you represent C as an uncountable disjoint union of Cantor sets?

Proof. Yes. Take Ci = {(i, x)} ⊆ C × C, and thus
⋃

iCi
∼= C since C ∼= C × C. Hence, we

are done.

Exercise 8.13. Can you get an uncountable number of disjoint uncountable sets, which
all have measure zero, and get measure zero for its union?

Proof. Yes, the previous exercise immediately answers this.

§9 Lebesgue measure in R

Read Princeton Lectures in Analysis III: Measure Theory, Integration, and Hilbert Spaces
by Stein.

Definition 9.1 (Outer measure). Define the outer measure µ∗ : 2R → [0,∞], which
satisfies µ∗([a, b]) = b− a and µ∗((a, b)) = b− a. One may define outer measure for all
subsets of R, that is, for a set X ⊆ R, define µ∗(X) := infx⊆

⋃
i∈I
Ui{
∑

i∈I µ
∗(Ui), where

Ui are open intervals and I is an index set (i.e., countable).

An outer measure µ∗ satisfies the following properties:

1. E ⊆ E′ =⇒ µ∗(E) ≤ µ∗(E′) (monotonicity)
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2. For countably many disjoint sets {Ei},

µ∗

(⋃
i

Ei

)
≤
∑
i

µ∗(Ei)

(countable sub-additivity)

Remark. But we want something better, for example, we’d want

µ

(⋃
i

Ei

)
=
∑
i

µ(Ei)

to hold for countably many disjoint sets {Ei}.

Definition 9.2. A set E is said to be Lebesgue measurable if for any X ⊆ R,

µ∗(E) = µ∗(X ∩ E) + µ∗(X∁ ∩ E)

A Lebesgue measure µ : 2R → [0,∞] exists if and only if E is Lebesgue measurable,
and in that case, µ(E) = µ∗(E).

Theorem 9.3

All Borel sets are Lebesgue measurable.

There exists non-Borel sets that are Lebesgue measurable, since the cardinality of
Lebesgue measurable sets is strictly larger than the cardinality of Borel sets.

Example 9.4 (Vitali set)

A Vitali set is a subset V of the interval [0, 1] of real numbers such that, for each real
number r, there is exactly one number v ∈ V such that v − r is a rational number.

Vitali sets are non-Borel but Lebesgue measurable.

A Lebesgue measure µ satisfies the following properties:

1. E ⊆ E′ =⇒ µ(E) ≤ µ(E′) (monotonicity)

2. For countably many disjoint sets {Ei},

µ

(⋃
i

Ei

)
=
∑
i

µ(Ei)

(countable additivity)

3. µ(E + x0) = µ(E) for all x0 (translation invariant)

Definition 9.5. A set E is meager if E =
∞⋃
i=1

Ei for all i, and Ei is nowhere dense.

A set E is nonmeager if it is not meager.
A set E is called comeager (or a residual set) if E∁ is meager.
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Remark. To actually construct a Lebesgue measure, we need Carathéodory’s extension
theorem.

§9.1 Digression

Euler found a continuous fraction expansion for er where r ∈ Q.

Definition 9.6. A simple continued fraction is of the form 1
a1+

1

a2+
1

a3+...

where the

numerators are all 1.

There are three historically important ways of representing numbers and functions:

1. series

2. product

3. continuous fraction

Example 9.7 (Series representation)

sinx =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

Example 9.8 (Product representation, Euler)

sinx

x
=

∞∏
k=1

(
1− x

kπ

)(
1 +

x

kπ

)

Example 9.9 (Basel problem)

Comparing coefficients of two different representations, we get the solution to the
Basel problem:

∞∑
n=1

1

n2
=

π2

6

Example 9.10 (Sophomore’s dream)

∞∑
n=1

n−n =

∫ 1

0
x−xdx

Example 9.11 (Lindemann)

Lindemann showed that π2 is transcendental, solving the famous Greek problem
about the quadrature of the circle.
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Example 9.12 (Apéri)

∑ 1

n3
/∈ Q

Problem 9.13. Why is the set of all base 2 normal numbers in (0, 1] measurable?

Theorem 9.14 (Cassels)

Almost every x ∈ C, with respect to the natural probability measure on C, is base 2
normal.

We define a measure on C quite differently than what we usually do (the Borel measure).
We give the first left half interval measure 1

2 and the right half interval measure 1
2 as well.

Then, for the second iteration, we assign measure 1
4 for each interval.

Problem 9.15. Show that the set of normal numbers is uncountable, only using c =
0.1234567891011 . . . is normal.

Proof. One may delete any single digit, which still gives us a normal number since
normality is a symplectic property. We may pick a n2th digit, and either delete it or not.
Then, we have uncountably many normal numbers, hence we are done.

Let fn : [0, 1]→ R be continuous functions. Assume that pointwise limit exists, i.e.,

f(x) = lim
n→∞

fn(x)

Exercise 9.16. Is f measurable?

Exercise 9.17. Is fn measurable, given that fn is uniformly bounded?

Let Ω = {0, 1}N = C1;0 ∪C1;1 where C1;0 = {x ∈ Ω : x1 = 0} and C1;1 = {x ∈ Ω : x1 =
1}.

Definition 9.18. Two measure spaces X1 = (X1,B1, µ1) and X2 = (X2,B2, µ2) are
isomorphic if there exists a “one-to-one almost everywhere” measure-preserving mapping
φ between X1 and X2 such that X1

φ−→ X2 and ∀A ∈ B1, µ1(A) = µ2(φ(A)).
That is, ∃N1 ∈ B1, µ1(X1 \ N1) = 1 and ∃N2 ∈ B2, µ2(X2 \ N2) = 1 such that

φ : X1 \N1 → X2 \N2 is a one-to-one bimeasurable bijection which preserves measure.

Remark. We write N1 and N2 for negligible sets.

Exercise 9.19. Prove that [0, 1] ∼= [0, 1]× [0, 1] ∼= {0, 1}N as measure spaces.

Definition 9.20. Denote Cn1,n2,...,nk; i1,i2,...,ik as all x ∈ Ω which have it at coordinate nt,
with n1 < n2 < · · · < nk and ij ∈ {0, 1}. Then, Cn1,n2,...,nk; i1,i2,...,ik generates a σ-algebra
of subsets of Ω.

We have µ(C1;0) = µ(C1;1) =
1
2 .

Consider the set C17,21; 0,1, that is, all x ∈ Ω which have 0 at coordinate 17 and 1 at
coordinate 19. Then, µ(C17,21; 0,1) =

1
4 .
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Exercise 9.21. There are uncountably many measures on the symbolic space of {0, 1}N.
(Think of an unfair coin, with probability p and q.)

§10 Hamel basis

Definition 10.1. A Hamel base in R is a base in the vector space RQ.

Example 10.2

dimRR = 1. dimRQ is not finite.

Theorem 10.3

Any vector space has a base.

Theorem 10.4

Any field F is a vector space over its fixed subfield F0. Hence, ax+by are well-defined
∀x, y ∈ F and ∀a, b ∈ F0.

Theorem 10.5 (Hamel basis)

If H ⊆ R is a Hamel base, then ∀x ∈ R, x can e uniquely written as x =
∑

i aihi
where hi ∈ H and ai ∈ Q.

Exercise 10.6. Prove that |H| = |R|.

Exercise 10.7. Prove that {√p | p ∈ P} are Q-independent.

§10.1 Cauchy functional equation

Definition 10.8 (Cauchy FE). Given f : R→ R such that f(x+ y) = f(x) + f(y) for
all x, y ∈ R. We call this a Cauchy functional equation on R.

Exercise 10.9. If f is continuous, then f(x) = cx for some c ∈ R.

Exercise 10.10. If f is assumed to be measurable, then ∃c such that f(x) = cx.

Exercise 10.11. Prove that there exists uncountably many solutions to the Cauchy
functional equation.

§11 Young tableaux

Definition 11.1 (Alphabet). Let w = u1 . . . un where ui ∈ Z>0.
We have a monoid (free semigroup on infinitely many generators) M with ∅ ∈M . We

have the operation concatenation, that is, for w1 = u1 . . . un and w2 = v1 . . . vm, we have
w1w2 = u1 . . . unv1 . . . vm. There are two transformations K ′ : xyz → xzy if z < x ≤ y,
and K ′′ : xyz → yxz if x ≤ z < y.
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Definition 11.2 (Knuth equivalence). We call two words w1, w2 Knuth equivalent if one
may obtain w1 ⇝ w2 via K ′ and K ′′. We denote such equivalence relations as w ≡ v.

Thus, we have w1 ≡ w2 and v1 ≡ v2 then w1v1 ≡ w1v2 ≡ w2v2 ≡ w2v1.
We may take the plactic monoid M = F⧸R.

Definition 11.3 (Young diagram). A Young diagram (or sometimes called a Ferrers
diagram) is a left-aligned collection of boxes with weakly decreasing rows. Formally, a
Young diagram is {λ ⊢ n | λ1 ≥ λ2 ≥ · · · ≥ λm} where λ ⊢ n means λ varies over all
partitions of n, which is equivalent to a Young diagram with n boxes.

Example 11.4

An example of a Young diagram is (4, 4, 2, 2).

Definition 11.5 (Young tableaux). A Young tableaux is a “filling” of a Young diagram
with positive integers such that the numbers are weakly increasing along rows and strictly
increasing down columns.

Remark. Young tableaux were first introduced by Alfred Young in 1900.

Definition 11.6 (“Bumping”). Define a bumping (row-insertion / Schensted operation)
of a tableau as follows. Given x ∈ Z>0 and T , we “insert” x (denoted as T ← x) and get
a different tableau, performing either one of the following two operations:

1. If x is greater than equal to all of the first row, then place x on the end.

2. Otherwise, place x as far to the right as possible, and then “bump” the entry of
that box to the next row.

Define the word of a tableau as the sequence of entries read left to right, bottom
to top (this gives the uniqueness). Note the natural isomorphism between the Knuth
equivalence we defined and the entries of a tableau.

Theorem 11.7

In each Knuth equivalence class, there exists a unique word that corresponds to a
tableau.

Let Mm be a monoid, and consider Z[Mm]. The morphism φ : Z[Mm]→ Z[x1, . . . , xm].

We have xT =
dm

i=1 x
ci(T )
i . Then, φ

(∑
T shape λ T

)
= Sλ(x1, . . . , xm), where Cλ is the

number of i’s in T , and Sλ(x1, . . . , xm) · hp(x1, . . . , xm) =
∑

SM (x1, . . . , xm).
Given a word in Z>0, we can get a tableau associated to this word, along with a

“recording” tableau (of the same shape).

Theorem 11.8 (Robinson correspondence)

There exists a one-to-one correspondence between words of length n with entries
{1, 2, . . . , n} and (P, Q) of standard tableau of same shape with n boxes.
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Theorem 11.9 (Tableaux identity)

If fλ is the number of standard tableaux of shape λ, then

n! =
∑
λ⊢n

(
fλ
)2

Theorem 11.10 (Robinson–Schensted correspondence)

There exists a one-to-one correspondence between words of length n with entries in
[m] and (P, Q) with same shape, where Q is standard and P has entries in [m].

Theorem 11.11 (Robinson–Schensted–Knuth correspondence)

There exists a one-to-one correspondence between two rowed arrays in lexicographical
order with row length n and (P, Q) which is a tableau of same shape with n boxes.

We can reconstruct a tableau from (P, Q) as follows. Given an order 2 row array, on
the bottom row, we get a T corresponding to the bottom row. Then, fill the recording
tableau with entries in the top row. Repeat this procedure until we don’t have any entries
left.

Theorem 11.12 (Cauchy)

nl

i=1

ml

j=1

1

1− xiyj
=
∑
λ

Sλ(x1, . . . , xn)Sλ(y1, . . . , ym)

Definition 11.13. A probability space is a measure space (X,B, µ) with µ(X) = 1.

Definition 11.14. For a transformation T : X → X, we say T preserves measure when
∀A ∈ B, µ(T−1(A)) = µ(A).

Example 11.15

Consider T (x) = 2x mod 1.

Definition 11.16. For two measure spaces (X1,B1, µ1) and (X2,B2, µ2), we say a
mapping f : X1 → X2 is measure-preserving if ∃Yi ⊆ Xi such that µi(Xi \ Yi) = 0 and
µ1(Yi) = µ2(f(Yi)).

Definition 11.17 (Outer measure on Rd). Take any set E ∈ P(Rd). Then, define the
outer measure of E to be

µ∗(E) := inf
E⊆

⋃∞
i=1 Qi

∞∑
i=1

|Qi|

where {Qi}∞i=1 is any countable collection of closed cubes.
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Remark. Note that µ∗ does not have the “ideal” condition for a measure. In fact, it doesn’t
even have finite additivity.

Definition 11.18 (Lebesgue measurable sets). A set E is called Lebesgue measurable if
∀ε > 0, there exists an open set O ⊆ Rd with E ⊆ O such that µ∗(O \ E) < ε.

Theorem 11.19 (Criterion for Lebesgue measurability)

A set E ⊆ Rd is Lebesgue measurable if and only if E differs from a Gδ (countable
intersection of open sets) or Fσ (countable union of closed sets) set with a set of
Lebesgue measure zero.

Theorem 11.20

f : Rd → R is called to be measurable if ∀a ∈ R, f−1((−∞, a)) is measurable.
Equivalently, f is measurable if for all open sets O ⊆ R, f−1(O) is measurable.

Exercise 11.21. Prove that the following are properties of measurable functions:

1. If f is measurable, then fk is measurable.

2. If f and g are measurable, then f + g is measurable.

3. If f and g are measurable, then f · g is measurable. (Pointwise multiplication)

4. If {fn} is a sequence of measurable functions, then lim sup fn(x), lim inf fn(x),
sup fn(x), inf fn(x) are measurable.

5. If {fn} is a sequence of measurable functions, then if limn→∞ fn(x) = f(x) exists,
then f is also measurable.

Exercise 11.22. Prove that the following are properties of continuous functions:

1. If f is continuous, then fk is continuous.

2. If f and g are continuous, then f + g is continuous.

3. If f and g are continuous, then f · g is continuous. (Pointwise multiplication)

4. If {fn} is a sequence of uniformly continuous functions, then limn→∞ fn(x) = f(x)
exists, and f is also continuous.

§12 Cesàro limits

Definition 12.1. If 1
N

∑N
i=1 ai → a, we say that a is the Cesàro limit of (ai)

∞
i=1, which

we denote as clim(ai) = a.

Example 12.2

Consider the sequence ai = {1, −1, 1, . . . }.
Taking the Cesàro limit, we have clim(ai) = 0.
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1. clim(ai + bi) = clim(ai) + clim(bi)

2. clim(ai · bi) ̸= clim(ai) · clim(bi)

Example 12.3 (Szemerédi)

d(A) := lim sup
N→∞

|A ∩ {1, 2, . . . , N}|
N

= lim sup
N→∞

1

N

N∑
n=1

1A(n).

Example 12.4 (Normal sequences)

x =

∞∑
i=1

ti
2i

is base t normal if dk :=
1

N

N∑
i=1

1k(ti) =
1

t
for all k ∈ {0, 1, 2, . . . , t− 1}

where 1k(i) =

{
1 if i = k

0 if i ̸= k

Exercise 12.5. Prove that arbitrarily permuting the elements of a sequence can “kill”
positive density.

Exercise 12.6. Prove that x ∈ [0, 1] is normal in base 2 if and only if the sequence
2nx mod 1 is uniformly distributed in [0, 1].

Definition 12.7. A sequence (xn) ⊆ [0, 1] is uniformly distributed if ∀a, b such that
0 ≤ a < b ≤ 1,

lim
N→∞

|{1 ≤ n ≤ N : xn ∈ (a, b)|
N

= b− a

or equivalently,

∀f ∈ C[0, 1],
1

N

∑
f(xn)→

∫ 1

0
f dx

which is also equivalent to

lim
N→∞

1

N

∑
1
(xn)
(a,b) →

∫ 1

0
1
(x)
(a,b) dx = b− a

Theorem 12.8

Almost every (xn) ⊆ R is uniformly distributed mod 1.

Natural examples of uniformly distributed sequences mod 1 are:

Example 12.9 (Weyl)

{nα} and {n2α}, where α /∈ Q.

Exercise 12.10. Prove that {nα} is uniformly distributed in [0, 1], where α /∈ Q.

Example 12.11 (Fejer)

{nc}, where c > 0, c /∈ N.
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Theorem 12.12 (Weierstrass’ approximation theorem)

∀f ∈ C[0, 1], ∀ε > 0, there exists a polynomial g(x) ∈ R[x] such that

max
x∈[0,1]

|f(x)− g(x)| < ε

Definition 12.13. A metric space (X, d) is separable if there exists a countable dense
subset in X, i.e., S ⊆ X, S countable, and S = X.

Example 12.14

A nonseparable space. Let S be an uncountable set equipped with a discrete metric.

Exercise 12.15. Is L∞(R) separable?

Example 12.16

C[0, 1] is separable, since every function can be approximated by polynomials by
Weierstrass’ approximation theorem, which can again be approximated by rational
polynomials.

§13 Fourier series

Remark. We want to know when and how
∑∞

1 (an sin(nx) + bn cos(nx)) = f(x) ∈ C[0, 1]
holds.

Ideally, we want
∑N

n=0(an sin(n) + bn cos(nx)) = σN (f) → f(x) uniformly for all x.
However, it is not the case.

Theorem 13.1 (Fejer)

Let σN (f) :=
∑N

n=0(an(f) sin(nx) + bn(f) cos(nx)) for x ∈ [−π, π], then

σ1(f) + σ2(f) + · · ·+ σN (f)

N
⇒ f(x)

uniformly, in the norm of C[−π, π].

Theorem 13.2 (Trigonometric form of Weierstrass)

For any f ∈ C[−π, π], ∀ε > 0, there exists a trigonometric polynomial T (x) such
that maxx∈[−π,π] |f(x)− T (x)| < ε.

Exercise 13.3. Prove that Fejer’s theorem implies Weierstrass’ approximation theorem.
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Example 13.4

Note that x
2 =

∑∞
n=1

(−1)n+1

n sin(nx) on [−π, π]. Thus, x2

4 =
∑∞

n=1
(−1)n

n2 cos(nx),
and plugging in x = π

2 , we get a proof for the Basel problem.

Theorem 13.5

If fn(x) ∈ C[0, 1] and f(x) = limn→∞ fn(x) exists ∀x ∈ [0, 1], then f(x) has many
points of continuity. More precisely, the set of points of continuity of f is a dense
Gδ set (countable intersection of open sets).

δ means intersection and σ means union.
Gσδσ is the countable union of countable intersection of countable union of open sets.

Theorem 13.6

If fn ∈ C[0, 1] and fn → f in C[0, 1], then f ∈ C[0, 1].

Definition 13.7 (Baire class). Baire class 0: continuous functions C[0, 1]. Baire class
1: pointwise limits of functions from Baire class 0. Baire class 2: pointwise limits of
functions from Baire class 1. . . .

Example 13.8

Let f(x) =

{
0 if x ∈ Q
1 if x /∈ Q

, then f is in Baire class 2.

§14 Invariant subspace problem

Remark. Every linear transformation T : Cn → Cn has an eigenvalue and its associated
eigenvector.

Definition 14.1. ∃x ≠ 0 such that Tx = λx for some λ. Let V = Span(x), then
T (V ) ⊆ V , where we call V an invariant subspace.

Problem 14.2. Given a Banach space X, a bounded linear operator T on X, does there
exist a closed invariant subspace, i.e., for U ⊊ X, T (U) ⊆ U?

Definition 14.3. A Banach space X is a vector space over C, with ∥·∥X that is complete.

Example 14.4

ℓp spaces (sequence spaces) are Banach spaces.

Example 14.5

Lp spaces (function spaces) are Banach spaces as well.
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Definition 14.6. A linear operator T on X is a linear mapping X → X such that
T (v + w) = T (v) + T (w) and T (λv) = λT (v).

Definition 14.7. A linear operator T is bounded if

∥T∥op = sup
x∈X, ∥x∥=1

∥Tx∥ <∞

Example 14.8

Here are examples of unbounded operators: (Txn) = (2nxn) in ℓ1(N).

Theorem 14.9

A linear operator T is bounded ⇐⇒ T is continuous.

Proposition 14.10

If X is non-separable, then it has a closed invariant subspace ∀T .

Proof. Consider the closure of the span of {Tnx}, which is separable.

Definition 14.11. A linear operator T is compact if T (B1) is compact.

Example 14.12

Linear operators with its image having finite rank are compact.

Theorem 14.13 (Schauder, 1930)

If X is a Banach space and F is a continuous linear operator, satisfying F (C) ⊆
K ⊆ C, where K is a compact set and C is a convex set, then there exists a fixed
point, i.e., F (X) = X in C.

Theorem 14.14 (Lomonosov, 1973)

If T ⊂ B(X,X) (i.e., any Banach space) is compact, then it has a closed invariant
subspace.

Proof. Assume FTSOC that T has no eigenvector. ∀y ∈ X, consider My = {Sy : ST =
TS}, which is closed (exercise: show that it forms an algebra). It suffices to prove that
My ̸= X for some y. Suppose My = X ∀y. Choose B1(x0) ̸∋ 0.

Claim 14.15 — For all y, there exists a neighborhood W of y such that S(W ) ⊂ B
for some S.

Proof. For all S with ST = TS and Sy ∈ B for some y, ∃WS such that S(WS) ⊆ B
and {WS} is an open cover for X. Then, {WS} covers T (B), but since T is a compact
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operator and B is a Banach space, we may find a finite subcover that covers T (B), which
means {W1, . . . ,Wn} covers T (B).

Define Φ(y) =
∑n

i=1
qi(y)
q(y) Si(y), where qi(y) = max(0, 1 − ∥Si(y) − x0∥) and q(y) =∑

i qi(y), where x0 is the center of B. Then, since Φ is continuous, Φ(T (B)) ⊂ B is also
compact, thus by Schauder fixed point theorem, Φ ◦ T (B) ⊆ compact set ⊆ B.

Now, Φ◦T (x∗) = x∗, so
∑

( qi(x
∗)

q(x∗) )Si◦Tx = x, which has a finite dimensional eigenspace
due to spectral theory, contradiction. ■

Theorem 14.16 (Per Enflo)

Per Enflo claims to have solved the general problem in Hilbert spaces.

§15 Measures

Read Measure & Category by Oxtoby, and Real Analysis by Royden. (NOT Royden &
Fitzpatrick.)

Theorem 15.1 (Lebesgue’s “points of density” theorem)

Given A ⊂ R with µ(A) > 0, then for almost every x ∈ A,

lim
ε→0

µ(A ∩ (x− ε, x+ ε))

2ε
= 1

Corollary 15.2 (Steinhaus)

If A ⊂ R, µ(A) > 0, then A−A ⊃ (−ε, ε) for some ε > 0.

Problem 15.3. ∀ε > 0, is there E such that µ(E ∩ I) = 1
2µ(I) for all I = (a, b) where

|b− a| < ε.

No, since ∃ε > 0 such that

µ(A ∩ (x− ε, x+ ε))

µ(x− ε, x+ ε)
= 1

which is directly implied by Lebesgue’s “points of density” theorem.

Exercise 15.4. True or false: If A ⊂ R and µ(A) > 0, then A contains a Cantor set.

Lemma 15.5 (Regularity of Lebesgue measure)

If A ⊂ [0, 1], then A contains a compact subset K such that |µ(A)− µ(K)| < ε.

Lemma 15.6 (Dual of regularity of Lebesgue measure)

If A ⊂ [0, 1], then there exists an open set O such that A ⊂ O and |µ(A)−µ(O)| < ε.
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Exercise 15.7. True or false: If A ⊆ R is uncountable and compact, then A contains a
Cantor set.

Exercise 15.8 (Stronger version). True or false: If A ⊂ R and µ(A) > 0, then A contains
a Cantor set of positive measure.

Lemma 15.9

If µ(A) = a > 0, then ∃A1 ⊂ A such that µ(A1) =
a
2 . Moreover, for any t ∈ [0, a],

∃At ⊂ A such that µ(At) = t. That is, the range of µ on {A ∩ C | C ∈ B} is
[0, µ(A)].

Exercise 15.10. Is there a fat Cantor set in R \Q?

First, it is easy to create a Cantor subset in R \Q.
Take Q ∩ [−

√
2,
√
2], which we let to be r1, r2, . . . .

Then, take ε1 small enough so that (r1 − ε1, r1 + ε1) fits in the interval [−
√
2,
√
2];

take another interval centered at a rational point disjoint to all previous ones, and repeat.
Now, just take these intervals so that the sum of their measures is less than µ([−

√
2,
√
2]),

then we have a fat Cantor set.

Definition 15.11. Define a general measure µf ((a, b)) := f(b)− f(a) for any monotone
(not necessarily continuous) function f .

Remark. Why do we specifically care about Lebesgue measure? Because f(x) = x is the
unique function that satisfies translation invariance of measure, that is, µ(A) = µ(A+ t) for
all t ∈ R. (Proof: Cauchy functional equation directly implies that f(x) = x+ c.)

§15.1 Three Littlewood’s principles

The following principles are philosophical principles, not mathematical ones, formulated
by J. E. Littlewood.

• Sets of positive measure are “locally” intervals. (cf. Lebesgue’s “points of density”
theorem)

• Measurable functions are “almost” continuous. (cf. Lusin’s theorem)

• Pointwise convergence for a sequence of measurable functions is “almost” uniform
convergence (for {fn} defined on [0, 1]). (cf. Egorov’s theorem)

Theorem 15.12 (Egorov’s theorem)

For (X,A, µ) where X ⊆ Rn, let {fn} be a sequence of measurable functions
fn : Rn → R, with {fn(x)} → f(x) almost everywhere. Then, ∀ε > 0, one may find
some closed set Fε ⊆ X such that µ(X \ Fε) < ε and {fn} → {f} uniformly on Fε,
that is, lim supx∈Fε

|fn(x)− f(x)| < ε.

Proof. For each n, k ≥ 0, define En
k := {x ∈ X : |fj(x)− f(x)| < 1

n for all j, k}.
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Then, for ε > 0, one may always find someN such that Aε :=
⋂

n≥N En
k and µ(X\Aε) <

ε/2. [Exercise: show that fn → f uniformly on Aε.] Now, choose a closed subset Fε ⊆ Aε

such that µ(Aε \ Fε) < ε/2, then {fn} → f on Fε, where Fi is a closed subset, with
µ(X \ Fε) < µ(X \Aε) + µ(Aε \ Fε) < ε, so we are done.

Theorem 15.13 (Lusin’s theorem)

Let X ⊆ Rn be a measurable set, f be measurable and finite valued on X, that
is, f(x) < ∞ for all x ∈ X. Then, ∀ε > 0, ∃Fε ⊆ X closed such that Fε ⊆ X and
µ(X \ Fε) < ε such that f |Fε is continuous.

Exercise 15.14. Can you “modify” a function on a measure zero set to make it continu-
ous?

Exercise 15.15. If A ⊂ R, µ(A) > 0, then A contains an affine image of any finite set
F , that is, F = {x1, . . . , xn} =⇒ A ⊃ aF + b for some a ̸= 0, b ∈ R.

Remark. The groups of rigid motions G(R2) and G(R3) have an important distinction:
G(R2) is amenable, and G(R3) is not amenable. This is the background of the Hausdorff-
Banach-Tarski paradox.

Definition 15.16. A countable group G is amenable if there exists a finitely additive
probability measure on P(G) such that ∀g ∈ G and ∀A ⊂ G, µ(A) = µ(Ag) = µ(gA),
where gA = {gx | x ∈ A}.

Remark. The advantages are that every group in the discrete topology is measurable, and
that you get a probability measure. One disadvantage is that the measure is only finitely
additive.

Any large set A ⊂ R is combinatorially rich, i.e., it contains an affine image of any
finite set F ⊂ R.

Exercise 15.17. Prove that for any E ⊂ Z such that d(E) > 0, E is combinatorially
rich, i.e., it contains an affine image of any finite set F ⊂ Z.

Proof. By Szemerédi’s theorem, we may “insert” F into E by translation and scaling, so
we are done.

Exercise 15.18. Are there sets of zero measure in R that are combinatorially rich?

Problem 15.19. Is the Cantor set combinatorially rich?

Exercise 15.20. Prove that the Lebesgue measure on Rn is invariant with respect to all
rigid motions, which is a unique property up to normalization.

Problem 15.21. Give a counterexample for sets A, B ⊂ R such that both A and B are
Lebesgue measurable, yet A+B is not Lebesgue measurable.

Definition 15.22. L2[0, 1] are the classes of equivalent measurable functions f : [0, 1]→ R
which are square-integrable, i.e.,

∫ 1
0 |f |

2 < ∞. Then, we have the norm ∥f∥Lp :=
(
∫
X |f |

pdµ)P 1
p , and ∥f∥Lp is an equivalence class:
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• ∥f∥Lp = 0 ⇐⇒ f ≡ 0 (( =⇒ ) by definition)

• ∥λf∥Lp = |λ|∥f∥Lp (homogeneity)

• ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp for p ∈ [1,∞) (triangle inequality)

The third inequality is Minkowski’s inequality, which can be shown by weighted
AM-GM and Hölder.

The formal statements of those inequalities are as follows:

Lemma 15.23 (Weighted AM-GM)

For all λ ∈ [0, 1], AλB1−λ ≤ λA+ (1− λ)B.

Lemma 15.24 (Hölder)

For 1
p + 1

q = 1, we have ∥fg∥L1 ≤ ∥f∥Lp · ∥g∥Lq .

Lemma 15.25 (Minkowski)

For p ∈ [1,∞), ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .

Definition 15.26. ℓ2 = {x = (x1, x2, . . . ) :
∑∞

i=1 |xi|2 <∞}.

Exercise 15.27. Prove that d(f, g) =
√∫ 1

0 |f − g|2dx is a metric.

Definition 15.28. Define Lp(X,B, µ) to be the set of functions f with∫
X
|f |pdµ <∞

where µ is σ-finite (meaning it has countable additivity).

Remark. If we allow µ to be infinite, then ℓp = Lp(N,B, counting measure).

Let f : C[−π, π] with f ∈ L2[−π, π]. Then, we have the following analogues between
L2 spaces and ℓ2 spaces. . . .

• Metric of L2: d(f1, f2) :=

√∫ π

π
|f1 − f2|2 = ∥f1 − f2∥L2 .

• Inner product of L2: ⟨f1, f2⟩ :=
∫ π

−π
f1f2.

• Orthogonal basis of L2[−π, π] is given by {1, cos(nx), sin(nx)} for n ∈ N, that
is, any f ∈ L2 can be expanded into infinite convergent series of the form∑∞

n=0 an sin(nx) + bn cos(nx).

Remark. Functional analysis is linear algebra in infinite-dimensional spaces.
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Theorem 15.29

In L2[−π, π], ∥σN (f)− f∥L2 → 0 as N →∞.

Problem 15.30. Is the analogue of the above theorem true in C[−π, π]?

Definition 15.31. An extreme point x of a convex set C is a point which has no
nontrivial representations of the form x = αx1 + (1− α)x2 where α ∈ (0, 1), x1, x2 ∈ C,
and x1 ̸= x2.

Compact convex sets (convex bodies, usually assumed to have nontrivial interior) in
Rn have extreme points.
The set of extreme points of nontrivial convex body is of 2D measure zero.

Exercise 15.32. Why is there always an extreme point?

Remark. The extreme points form a “basis” of a convex set.

Exercise 15.33. Prove that Lebesgue’s density theorem implies Steinhaus.
[Hint: Alternative formulation of Steinhaus is µ(A ∩A− t) > 0 for all small enough t,

that is, limt→0 µ(A ∩A− t) = µ(A).]

Exercise 15.34. Is there a nonmeasurable set whose set of differences contain a nontrivial
interval?

Cauchy functional equations give the self-homomorphisms of R.

Exercise 15.35. What are all the self-homomorphisms of C?

Exercise 15.36. Prove that there exists a set A such that A is measurable, but A+A
is nonmeasurable.

Lemma 15.37

The classical Cantor set contains a basis of RQ.

Proof. First, note that since C + C = [0, 2], C is a spanning set of RQ. Second, any
spanning set contains a basis. ■

Proof. Let H ⊆ C be a Hamel base of RQ. Note that µ(H) = 0. Let Γ1 = QH = {rh :
r ∈ Q, h ∈ H}. Note that µ(Γ1) = 0, since Γ1 =

⋃
r rH where a countable union of

measure zero sets is of measure zero. Let Γ2 = Γ1+Γ1. Note that µ(Γ2) = 0. Inductively,
define Γn := Γn−1 + Γn−1. Suppose Γn are all measurable, then µ(Γn) = 0.

But then, since every element in R is representable as a finite linear combination of H,
thus R =

⋃∞
n=1 Γn.

If µ(Γn) = 0 for all n ∈ N, then µ(
⋃∞

n=1 Γn) = 0, that is, µ(R) = 0, contradiction.
If ∃n ∈ N such that µ(Γn) > 0, then by Steinhaus, Γn+1 = Γn +Γn = R, but then R is

finitely generated, which means dimRQ <∞, contradiction to the fact that dimRQ =∞.
Hence, ∃n ∈ N such that Γn is measurable yet Γn + Γn is not measurable, which is

exactly what we wanted to show.
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Remark. Read the principle of condensation of singularities.

Definition 15.38. A Borel measure ν on [0, 1] is non-atomic, if ∀A ∈ B with ν(A) > 0,
∃Ã ⊂ A such that 0 < ν(Ã) < ν(A).

Exercise 15.39. Assume that ν is a non-atomic probability measure on B([0, 1]). Then,
{ν(A), A ∈ B} = [0, 1].

Theorem 15.40 (Lyapunov’s theorem about vector measures)

Assume that ν1, ν2, . . . , νn are non-atomic probability measures on B([0, 1]). Then,
the range of (ν1, ν2, . . . , νn), denoted as k = {ν1(A), ν2(A), . . . , νn(A) : A ∈ B}, is
compact and convex (in Rn).
The ranges of such vector measures are called zonoids.
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