
By
Jiw

u J
an
g,
Int
ern

al
Us
e

Class Field Theory

Jiwu Jang

July 7, 2023

This is a note on a series of lectures on class field theory, given by Bartu Bingol.

§1 Fermat’s Last Theorem

Problem 1.1 (Fermat’s Last Theorem). Solve xp + yp = zp where p > 2 is a rational
prime and (x, y, z) ∈ Z such that p ∤ xyz.

Easy examples first:

Example 1.2

Consider x2 + y2 = z2. We can factor in Z[i]: (x+ yi)(x− yi) = z2.

Example 1.3

Consider x3 + y3 = z3. We have (x+ y)(x2 − xy + y2) = 1, but if we consider Z[ζ3]
where ζ3 is a third primitive root of unity, then

(x+ y)(x+ ζ3y)(x+ ζ23y) = z3

§2 Lamé’s “proof” of FLT

The following is Lamé’s “proof” of Fermat’s Last Theorem in 1847.
Consider xp + yp = zp. If we consider Z[ζp] where ζp is a pth primitive root of unity,

then
(x+ y)(x+ ζpy)(x+ ζ2py) . . . (x+ ζp−1

p ) = zp

So, let us try to solve xp + yp = zp in Z[ζp].

Lemma 2.1

x+ ζipy and x+ ζjpy are coprime for all i ̸= j.

Proof. Suppose that there existed a prime q such that q | x+ ζipy and q | x+ ζjpy. Then,

q | ζipy − ζjpy. Without loss of generality, assume i > j. Thus, q | ζjpy
(
ζi−j
p − 1

)
. Since q

is a prime, q divides at least one of the following:

ζjp , y, ζi−j
p − 1
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Moreover, q | x − ζi−j
p x, hence q | x

(
1− ζi−j

p

)
. That is, q divides at least one of the

following:
x, ζi−j

p − 1

But since x and y are coprime, q | 1− ζi−j
p .

Lemma 2.2

1− ζkp and 1− ζp are associates, that is, they differ by a unit.

Hint: take the conjugate of both sides.

Proof. Obviously 1 − ζp | 1 − ζkp . It remains to prove that 1 − ζkp | 1 − ζp. Taking the

conjugate of both sides, we get 1− ζp−k
p | 1− ζp−1

p .

Because 1− ζi−j
p and 1− ζp are associates, we have q | 1− ζp, so taking the norm of

both sides, qp−1 | 2, which is a contradiction.

So, let us consider x+ ζpy = u · α.

Theorem 2.3 (Lamé)

For any β ∈ Z[ζp], βp ≡ m (mod p) for some integer m.

Lemma 2.4 (Kummer)

Every unit u ∈ Z[ζp] is of the form u · ζkp for some k. (This holds only for rings with
prime ideals.)

Proof. Explosive stuff, this needs the whole Chapter 14 of Lang’s Cyclotomic Fields
II.

Let us combine everything:

x+ ζpy = u · αp = u ·m (mod p) = u · ζkp ·m (mod p) (1)

Moreover, we can take the conjugate of x+ ζpy, so by (1),

x+ ζ−1
p y = u ·m = u ·m (mod p) (2)

So combining (1) and (2), we have

(x+ ζpy) = (x+ ζ−1
p y) · ζkp (mod p) (3)

This means
x+ ζpy = x · ζkp + ζk−1

p · y (mod p) (4)

Lemma 2.5

If a rational prime p divides γ ∈ Z[ζp], then p divides each of the coefficients

a0, a1, . . . , ap−2 where γ = a0 + a1 · ζp + · · ·+ ap−2 · ζp−2
p .

We do not need ζp−1
p since it is equal to −(1 + ζp + ζ2p · · ·+ ζp−2

p ).
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Proof. Take an element β ∈ Z[ζp] such that γ = p · β. Then, we can write a0 + a1 · ζp +
· · ·+ ap−2 · ζp−2

p = p · (b0 + b1 · ζp + · · ·+ bp−2 · ζp−2
p ).

This means

(a0 − p · b0) + (a1 − p · b1) · ζp + · · ·+ (ap−2 − p · bp−2) · ζp−2
p = 0 (5)

but since 1 + ζp + ζ2p + · · ·+ ζp−1
p = 0 and is irreducible, we know that 1, ζp, . . . , ζ

p−2
p

are linearly independent, so ai = p · bi for all 0 ≤ i ≤ p− 2.

This means
x+ ζp · y = x · ζp + y (mod p) (6)

So, we have
x− y + ζp(y − x) = 0 (mod p) (7)

which forces x = y (mod p) due to linear independence. Do the same thing for

xp + (−z)p = (−y)p (8)

then x = −z (mod p).
So, 3xp = 0 (mod p), but this can happen only when p = 3 or p | x. But we know by

Fermat, x3 + y3 = z3 does not have a solution. So p | x, contradiction. . . ? WRONG.
Z[ζp] is NOT a UFD!

Exercise 2.6. Prove that Z[ζ23] does not have unique factorization.

§3 Ideals

Definition 3.1. Let (R, +, ·) be a ring. An ideal I of R is:

1. abelian group under addition

2. closed under multiplication by R: ∀r ∈ R, ∀x ∈ I, rx ∈ I.

Example 3.2

R = Z. I = {0}, Z, 2Z, nZ.

Definition 3.3. We call an ideal p ⩽ R prime if ab ∈ p for some a, b ∈ R, then either
a ∈ p or b ∈ p. We call an ideal m ⩽ R maximal if there is no proper ideal containing m.

Example 3.4

R = Z, then m = 2Z, 3Z, pZ for p rational prime.

Now, let’s start our “construction.” We want R to satisfy:

(1) R ∩Q = Z

(2) R should include all roots of monic polynomials in R[x] which has solutions in
Q(α).

(3) We want R to have a unique factorization.

3



By
Jiw

u J
an
g,
Int
ern

al
Us
e

Jiwu Jang — July 7, 2023 Class Field Theory

(4) ∀x ∈ Q(α), ∃r1, r2 ∈ R and r2 ̸= 0 s.t. r1
r2
.

We expect R = Z[α]. Let’s consider x =
√
−3. This doesn’t work. . . .

On the other hand, α = ζ3 = −1−
√
−3

2 . Then, Q(ζ3) = Q(
√
−3). But this means

R = Z[−1−
√
−3

2 ]. We want (2). Moreover, ζ3 is a solution of x2+x+1. So, R = Z[−1+
√
−3

2 ].

Definition 3.5. We call such rings R ⊆ Q(α) a ring of integers (number rings), where α
is an algebraic number.

Exercise 3.6. Why is R a ring?

For any K = Q(α), we will denote R = OK .

Remark. However, the main story was describing a ring that has a unique factorization in
terms of prime ideals.

Definition 3.7. A ring R is called a Dedekind domain if it is integrally closed, nonzero
prime ideals are maximal, and Noetherian.

Theorem 3.8

Let K = Q(α) for some algebraic number α, then OK is a Dedekind domain.

The ring that we wanted to have unique factorization is Z[ζp]. Is this a number ring
for some Q(α)? It turns out that the answer is yes: Z[ζp] = OK for K = Q(ζp).
Nice, but we want to also obtain a set given exactly by prime ideals. We, of course,

want to be able to multiply. But we also want this to form a group.

1. Is this set closed under “multiplication”?

2. Does this set have an identity?

3. Does every element have one and only one inverse?

In order to be able to understand this, we should describe what “multiplication” of
ideals are. Consider OK . Let I and J be ideals of OK . Then, I · J := {i1j1 + · · ·+ injn |
ik ∈ I, jk ∈ J} (which we can do, since I and J are Noetherian, hence finitely generated).

So, let us consider such a set, a collection of all I · J , where I, J are prime.
The whole thing R is an identity, but this creates a problem: there are no inverses. (For

example, takeOK = Z, then 3
2 ,

4
3 /∈ Z, but 2 ∈ Z.) We want to have multiplicative inverses

as well. But multiplicative inverses are in K, not OK . So, we need our set to contain some
elements of K. Now, we have a collection {aI | a ∈ K s.t. for some I and J , aIJ = R}.

Remark. The main takeaway is that Dedekind domains have a unique factorization in
terms of prime ideals.

§4 Fractional ideals

In order to be able to give a proper description of a fractional ideal, we should first define
an R-module.

Definition 4.1. Let (R,+, ·) be a ring. Then, we call M an R-module if
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(1) M is an abelian group under +.

(2) M has scalar multiplication by R:

(i) 1 ·m = m

(ii) n, m ∈ M

(iii) (r1 + r2) ·M = r1M + r2M for each r1, r2 ∈ R, m ∈ M

(iv) (m1 +m2)r = m1r +m2r for each m1, m2 ∈ M , r ∈ R.

Example 4.2

Vector spaces are an R-module. They are modules over fields.

• Every ring R is an R-module.

• For K = Q(α) where α is an algebraic number, and OK being its number ring,
K is an OK-module.

Let’s fix our notation: OK and K.

Definition 4.3. A fractional ideal I is an OK-submodule of K such that a · I ⊆ OK for
some a ∈ OK .

Example 4.4

Consider K = Q, OK = Z and I = 1
2Z. We can take a = 2 ∈ OK so that a ·I ∈⊆ OK .

Definition 4.5. An invertible ideal I is an ideal such that there exists J = {x ∈ K |
a · J ⊆ OK for some a ∈ OK , with I · J = OK .

Lemma 4.6

Principal ideals are invertible.

Proof. A principal ideal is an ideal generated by a single element, x ∈ OK . Consider
J = 1

x · OK (where x ̸= 0). Then, I · J = (xOK) · ( 1x OK) = (x · 1
x)OK = OK .

Exercise 4.7. Prove that the principal ideals in K form a subgroup of I(OK) := P (OK),
which is in turn a normal subgroup (thus we may quotient by P (OK)).

Exercise 4.8. Prove that the fractional ideals in K, denoted as I(OK), form a group,
with operation being ideal multiplication.

Lemma 4.9

All prime ideals in OK are invertible.

Proof. Use localization. (The proof does not provide any insight, so it’s omitted.)
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Theorem 4.10

All fractional ideals can be uniquely expressed by a product of prime ideals.

Proof. Let us take a fractional ideal I = ⟨x1, . . . , xn⟩. Since each xi ∈ K, we can describe
xi =

αi
βi

for some αi, βi ∈ OK such that βi ̸= 0.
Let S be the common denominator of xi’s. Then, sI ⊆ OK . We know that OK is

a Dedekind domain. This means that we can find prime ideals pJ ≤ OK such that
sI = pe11 . . . pemm uniquely. Moreover, we can factorize sOK = qf11 . . . qftt . By the previous

lemma, we have I = q−f1
1 . . . q−ft

t pe11 . . . pemm uniquely.

Definition 4.11. Define Cl(OK) := I(OK)/P (OK).

Definition 4.12. Define the class number hK := |Cl(OK)| for a number ring R.

Lemma 4.13 (Minkowski bound)

For a number ring R, we have hK(R) = |Cl(R)| < ∞.

Theorem 4.14

hK(OK) = 1 if and only if OK has unique factorization.

Definition 4.15. A rational prime p is called regular if p ∤ |Cl(Z[ζp])|.

Theorem 4.16 (Kummer)

Let p be a rational regular prime with p ∤ xyz. Then, xp + yp = zp does not have
any non-trivial integer solutions. (The number of irregular primes is infinite.)

Proof. Let us factorize this in terms of ideals:
〈
x+ yζ1p

〉 〈
x+ yζ2p

〉
. . .

〈
x+ yζp−1

p

〉
=

⟨zp⟩ = ⟨z⟩p.

Lemma 4.17〈
x+ yζ1p

〉
and

〈
x+ yζkp

〉
are coprime.

Lemma 4.18〈
1− ζip

〉
and

〈
1− ζjp

〉
are associates, ∀i, j such that 1 ≤ i ̸= j ≤ p− 1.

Lemma 4.19〈
x+ yζip

〉
= Ipi for some ideal Ii ≤ Z[ζp].
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Proof. Notice that ⟨z⟩ has a unique factorization, i.e., ⟨z⟩ = pe11 . . . perr which implies

⟨zp⟩ = ppe11 . . . pperr . Let us check the LHS now: we have qf11 . . . qfkk . By Lemma 1, q1, . . . ,
qk are factors of only

〈
x+ yζip

〉
.

By the previous lemma, we know that Ipi is a principal ideal. Then, [Ipi ] = [Ii]
p = [Z[ζp]],

so the order of Ii is either p or 1, but since p is a regular prime, Ii is principal. The rest
of the argument is exactly the same as what we did on Monday.

Definition 4.20. Let K be a field. Then, L/K is called a field extension if L ⊇ K.
(L/K is read L over K.)

Example 4.21

K = Q and L = Q(i).

Definition 4.22. Consider p(x) ∈ Q[x]. Then, the splitting field of p(x) is the minimal
field extension of Q containing all roots of p(x).

Example 4.23

Consider 3
√
2. The minimal polynomial of Q( 3

√
2) is p(x) = x3−2. But Q( 3

√
2) is not

the splitting field of p(x), because 3
√
2 · ζ3 is a root of p(x), but it is not in Q( 3

√
2).

This means that we need a larger field that contains ζ3 as well. Hence, the splitting
field is K = Q( 3

√
2, ζ3).

Remark. The order of performing the extensions to the field does not change the splitting
field.

Q( 3
√
2, ζ3)

Q(ζ3) Q( 3
√
2)

Q

Figure 1: The splitting field of x3 − 2 reached by two different order of extensions.

Consider the following fields: Q(α) : a0 + a1α + a2α
2 and ai ∈ Q, and Q(ωα) :

a0 + a1ωα+ a2ω
2α2.

Let us try to factorize p(x) = x3 − 2 in Q(α), that is,

x3 − 2 = (x− α)(x2 + xα+ xα2) = (x− α)(x− ωα)(x− ω2α)

This means Q(α) is not enough, so we should add ωα as well. In this new field, every
element is of the form (a0 + a1α+ a2α

2)(a3 + a4α+ a5α
2)ωα.

Now, let us do the same thing, that is, try to factorize p(x) in Q(ω). Consider the map
σ1 : Q(α) → Q(ωα) with σ1 : α 7→ ωα. Then, we can factorize (x− σ1(α))(x

2 + σ1(α)x+
σ1(α

2)) = (x− ωα)(x2 + ωαx+ ω2α2).
Thus, in our new field Q(ωα, ω2α), every element is of the form (a0+a1ωα+a2ω

2α2)+
(a3 + a4ωα+ a5ω

2α2)ω2α.
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Our original extension had a0 + a1α+ a2α
2 + a3ωα+ a4ωα

2 + a5ωα
3. Now, we have

a0 + a1ωα+ a2ω
2α2 + a3ω

2α+ a4ω
2α2 + a5ω

4α3.
Looking at the actions of σ1, we have

α 7→ ωα

α2 7→ ω2α2

ωα 7→ ω2α

ωα2 7→ α2

ω 7→ ω

1 7→ 1

and α 7→ ωα 7→ ω2α 7→ α.
Let’s do the same thing with σ2 : α 7→ ω2α.
Looking at the actions of σ2, we have

α 7→ ω2α

α2 7→ ωα2

ωα 7→ α

ωα2 7→ ω2α2

ω 7→ ω

1 7→ 1

and α 7→ ω2α 7→ ωα 7→ α.
Let’s do nothing: e : α 7→ α and e : ω 7→ ω. This is the identity map.
This time, let us act nontrivially on ω as well. The only nontrivial choice for ω is

ω 7→ ω2. Then, we have either α 7→ α, α 7→ ωα, or α 7→ ω2α.
If α 7→ α, looking at the actions of σ3, we have

ω 7→ ω2

α 7→ α

α2 7→ α2

ωα 7→ ω2α

ω2α 7→ ωα

1 7→ 1

If α 7→ ωα, looking at the actions of σ4, we have

ω 7→ ω2

α 7→ ωα

α2 7→ ω2α2

ωα 7→ α

ω2α 7→ ω2α

1 7→ 1

8
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If α 7→ ω2α, looking at the actions of σ5, we have

ω 7→ ω2

α 7→ ω2α

α2 7→ ωα2

ωα 7→ ωα

ω2α 7→ α

1 7→ 1

Let’s consider {e, σ1, σ2, σ3, σ4, σ5}, which we call the Galois set. The set with the
operation being function composition is a group, since it has the identity e, inverses
(revert all the mappings), and associativity (composition is associative). This is called
the Galois group. The Galois group permutes the roots of the polynomial.

§5 Galois extensions

Exercise 5.1. Find the Galois group of x5 + x− 2, and whether that group is solvable.

K

p · OK OK Q

p Z

Figure 2: The big picture.

Let us check some examples where we know how p behaves in OK .

1. Consider K = Q(i), then OK = Z[i]. Take p = 2. Then, 2 · OK =?. We know that
2 = (1 + i)(1− i). Passing to the ideals, 2 · OK = ⟨1 + i⟩ · ⟨1− i⟩. Since 1 + i and
1− i are associates, we actually have 2 · OK = ⟨1 + i⟩2.

2. Continue with K = Q(i), and OK = Z[i]. Let’s consider p = 5. Then, 5 · OK =
⟨2 + i⟩ · ⟨2− i⟩.

Remark. The maximum number of “splits” is the degree of the extension: Q(i) is a
quadratic extension, hence there can be at most 2 splits.

In the general case, we consider p · OK = pe11 . . . pett , where pi is a prime ideal, and each
pi ≤ OK .

Definition 5.2. The exponents ei are called ramification indices.

• p · OK is still a prime — we say that p is inert.

• If p · OK = pe11 . . . pett where each ei = 1, then — we say that p splits.

• If p · OK = pe11 . . . pett such that some ei > 1, then — we say that p ramifies.

9



By
Jiw

u J
an
g,
Int
ern

al
Us
e

Jiwu Jang — July 7, 2023 Class Field Theory

Remark. For any extension, we only have finitely many ramified primes.

Remark. Why do we care about ramification? Because it is closely related to algebraic
geometry, especially multiple roots.

Let K/L be a field extension, such that there is a ramified prime of p · OK , then the
extension is called a ramified extension.

Remark. Every K/Q algebraic extension of Q has at least one ramified prime, which is
pretty bad.

But there are some other fields whose extensions are unramified, for example, Q(
√
−163).

Exercise 5.3. Let R be an integral domain and m be a maximal ideal of it. Prove that
R/m is a field.

Let us fix p · OK = pe11 . . . perr . Then, OK/pi is a field. Moreover, Z/p is also a field.
Then, [OK/pi : Z/p] is called the inertial degree, denoted fi.

Proposition 5.4

Let K/Q be a degree n extension, then,
∑

eifi = n.

Theorem 5.5 (Euler)

Let K/Q be a number field, p be a rational prime, OK = Z[α] for some α ∈ K, and
f be the minimal polynomial of α over Q. Then, we can uniquely and explicitly
factorize p · OK = pe11 . . . perr .

Proof. Let g be the minimal polynomial, such that g := ge11 . . . gerr be the factorization of
it. Let us denote their mod p reduction by g = ge11 . . . gerr . Define pi := ⟨p, gi(α)⟩. Then,
the following chain of isomorphisms hold:

OK⧸pi =
Z[α]⧸⟨p, gi(α)⟩

∼= Z[x]⧸⟨p, gi(x), g(x)⟩

∼=
Z⧸p[x]⧸⟨gi(x), g(x)⟩

∼=
Z⧸p[x]⧸⟨gi(x)⟩

since gi | g.
On the other hand,

OK⧸pOK
= Z[α]⧸pZ[α] ∼=

Z[x]⧸⟨p, g(x)⟩ ∼=
Z/p[x]⧸⟨g(x)⟩

taking the mod p reduction map. Since gi are relatively coprime, we get

Z⧸p[x]⧸⟨g(x)⟩ ∼=
∏
i

Z⧸p[x]⧸⟨geii (x)⟩

10
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by the Chinese remainder theorem.
Consider the mapOK → OK⧸pOK

(mod p reduction), then since the map is a surjection,
we have Kerφ = pOK .

OK

∏
i

Z⧸p[x]⧸⟨geii (x)⟩
OK⧸pOK

γ
φ

∼=

Figure 3: The kernels of the maps φ and γ.

Note that the diagram commutes, so Kerφ ∼= Ker γ.
We have Ker γ =

⋂
i ⟨g

ei
i (x)⟩. But Ker γ ∼= Kerφ = pOK . A ring theoretic property

says that since ⟨geii (x)⟩ are coprime, Ker γ =
∏

i ⟨g
ei
i (x)⟩ ∼= pOK .

Exercise 5.6. Show that ⟨p, geii (α)⟩ ∼= ⟨p, gi(α)⟩
e
i .

So, pOK
∼=

∏
i ⟨p, gi(α)⟩

ei , end of the proof.

Consider OK = Z[i]. The minimal polynomial of i is x2 + 1. What is 2OK? Note that
x2 + 1 = (x+ 1)2 (mod 2), so pOK = ⟨1 + i⟩2, thus it ramifies.
What is 17OK? x2 + 1 ≡ (x+ 4)(x− 4) (mod 17).
Consider ζ3. The minimal polynomial of ζ3 is x2 + x+ 1. Then, x2 + x+ 1 mod 2 is

irreducible, so 2 stays inert.

§6 Ramification theory

Remark (Book recommendations). • Jarvis — Algebraic Number Theory.

• Janusz — Algebraic Number Theory. (*)

• Cassels-Frölich — Algebraic Number Theory. (***)

• Cox — Primes of the form x2 + ny2.

• Washington — Introduction to Cyclotomic Fields. (**)

• Lorenzini — An Invitation to Arithmetic Geometry.

• Serre — Local Fields. (**)

• Fraleigh — Abstract Algebra.

• Eisenbud — Commutative Algebra towards Algebraic Geometry

• Hungerford — Algebra.

• Keith Conrad’s notes on anything.
Stars (*) indicate difficulty.

All these work has been for primes and equations. So, let’s solve one:
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Example 6.1

Let us solve x3 = y2 + 5 in Z.

Solution. If 2 | x, then y2 ≡ 3 (mod 8), contradiction. Hence, 2 ∤ x. Let g =
gcd(x, y), then g2 | 5, so g = 1. Thus, gcd(x, y) = 1. Let p1 :=

〈
y +

√
−5

〉
and

p2 :=
〈
y −

√
−5

〉
, which are not necessarily prime ideals. Let us check if p1 and p2 are

coprime. Suppose not: then there is a prime ideal (which is maximal, since Z[
√
−5]

is a Dedekind domain) p ≤ Z[
√
−5] such that p1, p2 ∈ p. So, x3 ∈ p =⇒ x ∈ p.

Also, y +
√
−5 + y −

√
−5 = 2y ∈ p. So, either 2 ∈ p or y ∈ p. But, (2, y) = 1,

so y /∈ p. That means 2 ∈ p. But x is odd, contradiction. Thus,
〈
y +

√
−5

〉
and〈

y −
√
−5

〉
are coprime. Since we have unique factorization of ideals, there are some

α1, α2 prime ideals such that
〈
y +

√
−5

〉
= α3

1 and
〈
y −

√
−5

〉
= α3

2.

Theorem 6.2 (Minkowski)

Let hK := |CK | ≤ n!

nn
·
(
4

π

)s

·
√
|∆K | where n = [K : Q], s is the number of

conjugates of complex embeddings, and ∆K is the discriminant of K.

So, we know that hK is bounded above. Let’s try to compute hK for Q(
√
−5) = K:

for K, we have s = 1, and |∆K | = 20. This means

hK ≤ 2

4
· 4
π
· 2
√
5 =

4
√
5

π
< 3

hence hK = 1 or hK = 2. But since hK = 1 implies the domain being a UFD,
yet Z[

√
−5] is not a UFD, we know that hK = 2. Hence, α2

1 is the identity in
CK , meaning that α2

1 is a principal ideal. Thus, α1 is a principal ideal. Therefore,
there is γ ∈ Z[

√
−5] such that y +

√
−5 = u · γ3 where u is a unit. But the units

of Z[
√
−5] are ±1. Hence, WLOG, y +

√
−5 = ±γ3. Let γ = σ1 + σ2

√
−5, then

1 = 3σ2
1σ2 − 5σ3

2 = σ2(3σ
2
1 − 5σ2

2), which has no solution.

Remark. Q(
√
−5) is a beautiful field, because it has some unramified extensions. We said

“some” because eventually we will have ramifications. So, the object of interest is maximal
unramified ideals.

Definition 6.3. Let HK/K be the maximal abelian unramified extension (of course HK

and K are number fields). Then, HK is called the Hilbert class field of K. (We say
HK/K is abelian if Gal(HK/K) is abelian.)

Theorem 6.4

Gal(HK/K) ∼= CK .

Example 6.5

Gal(Q(ζn)/Q) is always abelian.
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Theorem 6.6 (Kronecker-Weber)

Every abelian Galois extension of Q is included in Q(ζn) for some n.

Remark. Here’s the final picture, which leads to various areas of research, like Langlands. . .

Ideal class groups

Ramification theory Abelian Galois extensions

Figure 4: The even bigger picture.
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