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1. INTRODUCTION

In this paper, we prove the Unique Factorization Theorem (UFT) for Z, starting from the Ring
Axioms, Order Axioms, and Well-Ordering Principle. We begin by looking at properties and lemmas
of general rings, before moving on to integers and product notation. Then, we look at factorization
until we finally prove the UFT.

2. GENERAL RINGS

Axiom 1 (Ring Axioms). R is said to be a ring if Va, b, ¢ € R:

Commutative: a+b=b+a, a-b=b-a
Associative: a4+ (b+c)=(a+b)+¢c, a-(b-c)=(a-b)-c
Distributive:  a-(b+c¢)=a-b+a-c
Zero: (I0€R) (Vae R)a+0=a
Negatives:  (Va € R) (3(—a) € R) a+ (—a) =0
One: (31 € R) such that (Va e R) a-1=a

Lemma 2 (Uniqueness of Zero). In a ring R, let 0' € R such that (3a € R) a+0" = a. Then 0/ = 0.
Proof. We have a + 0’ = a for some a € R. By commutativity, we have 0' + a = a. By negatives,
J(—a) € R such that a+ (—a) = 0; we add (—a), giving (0’ +a) + (—a) = a+ (—a). By associativity,

0+ (a+ (—a)) = a + (—a). By negatives, that a + (—a) = 0; substituting, we get 0’ +0 = 0. But
also by definition of 0, 0/ + 0 = 0/; thus, by substitution, 0/ = 0. O

Lemma 3 (Uniqueness of One). In a ring R, let 1’ € R such that (Va € R) (a-1" = a). Then 1’ = 1.
Proof. Note a - 1" = a holds for all a € Z. 1 € Z, so substitute a = 1; then 1-1" = 1. By
commutativity, then 1’ - 1 = 1; but by the one axiom, 1’ -1 = 1’. Thus, substituting, 1’ = 1. O
Lemma 4 (Multiplication by Zero). In a ring R, (Va € R) (a-0=0)

Proof. By the zero axiom, a -0 =a- (0 + 0). By left distribution, a- (0+0) =a-0+a-0. Then
a-0+a-0=a-0,so by uniqueness of zero, a - 0 = 0. g
Lemma 5 (Trivial Ring). 0 =1 in a ring R if and only if R = {0}.

Proof. Suppose 0 =1 in a ring R. Then Va € R, a = a - 1 by the one axiom; substituting 0 for 1,
a=a-0. Recall a-0=0; thus a =0. Thus, a« € R = a = 0, and by the zero axiom we know

0 € R, so we must have R = {0}. For the other direction, suppose R = {0}. By definition of a ring,
d1l € R; thus 1 = 0. O

Lemma 6 (Additive Cancellation). In a ring R, (Va, b, ¥ € R) a+b=a+b — b=10
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Proof. Let a+b = a + V. Adding (—a) to both sides, (a + b) + (—a)
commutativity, (b+ a) + (—a) = (V' + a) + (—a). By associativity, b+ (a +
By the definition of negatives, b + 0 = b/ + 0; thus by the zero axiom, b =

— (a+¥)+ (-a). By
(—a)) =V + (a+(—a)).
b. 0
Lemma 7 (Uniqueness of Negatives). In aring R, (Va,x € R) a+2=0 = z = —a.

Proof. Let a,x € R such that a + = = 0. Adding (—a) to both sides, (a + x) + (—a) = 0+ (—a).
By commutativity, (z + a) + (—a) = (—a) + 0. By associativity, x + (a + (—a)) = (—a) + 0. By
definition of negatives, then  + 0 = (—a) + 0. Thus, by the zero axiom, z = —a. O

Lemma 8 (Properties of Negatives). Va,b € R:

(i) —(-a)=a
(ii) —(ab) = (—a)b
(iii) (—a)(—b) = ab
(iv) —a=(-1)-a
v) —(a+0b) = (—a)+ (-Db)
(vi) =0=0
(Vii) (—1)- (—1) =1

Proof of (i). By definition of (—a), a + (—a) = 0. Then by commutativity (—a) + a = 0. Thus by
uniqueness of negatives, a = —(—a). O

Proof of (ii). By definition of (—a), a + (—a) = 0. Then, multiplying by b, b(a + (—a)) = b-0. Thus
ba+b(—a) =b-0. Then, by commutativity, ab+ (—a)b =b-0. Recall b-0 = 0; thus ab+ (—a)b = 0.
Thus by uniqueness of negatives (—a)b = —(ab). O

Proof of (iii). Note —(ab) = (—a)b by section (ii) Then by commutativity —(ab) = b(—a). Applying
section (ii) again, —(—(ab)) = (=b)(—a). By section (i), we get ab = (—b)(—a), so by commutativity
(—a)(—b) = ab. O

Proof of (iv). Note (—a) = (—(a- 1)) by the one axiom. By commutativity, then (—a) = (—(1 - a)).
Thus by section (ii), (—a) = (—1) - a. O

Proof of (v). By section (iv), —(a + b) = (=1) - (a + b). Moreover, by left distribution, we have
—(a+b)=((—1)-a)+ ((—1) - b). Then, by section (iv), we have —(a + b) = (—a) + (—b), and we
are done. O

Proof of (vi). Note that by the zero axiom, we have 0 + 0 = 0. Thus, by uniqueness of negatives,
we have —0 = 0. O

Proof of (vii). By section (iii), we know that Va,b € R, (—a)(—b) = ab. Now, we can specify a and
b such that a = b = 1. In this case, (—1) - (—1) = 1- 1. Moreover, by the one axiom, 1-1 = 1. Thus,
(=1)-(—=1) =1, hence we are done. O

Definition 9 (Subtraction). Define a — b to be a solution y to the equation a = b+ y.
Lemma 10 (Existence, Uniqueness, and Properties of Subtraction). In any ring R, Va,b € R:

(i) (3(ea—b) € R) a=b+ (a—b) (Existence of Subtraction)
(i) (Vye R) a=b+y = y=a—>b (Uniqueness of Subtraction)
(iii) a — b= (=b) + a = a+ (-b). In particular, a — 0 = a.

(iv) —(a—b)=b—a
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(V) a—b=0 <= a=1b

Proof of (i). Consider (—b) + a. Note b+ ((—b) + a) = (b+ (—b)) + a, by associativity. Then, by
definition of (—b), b+ ((—=b) + a) = 0+ a. By commutativity, b + ((—b) + a) = a + 0. By the zero
axiom, we have a = b+ ((—b) + a). Hence, (—b) + a is a solution to the equation a = b+ y. Thus,
at least one value of a — b exists. O

Proof of (ii). Let y € Z such that a = b+ y. Note by definition of a — b, a = b+ (a — b). Thus by
transitivity b +y = b+ (a — b); thus adding (—b) to both sides, y = a — b. That is, there exists
exactly one solution to a = b+ y, equal to a — b. O

Proof of (iii). Note, as in section (i), (—b) + a is a solution to a = b+ y. Thus by part (ii),
(=b) + a = a — b. Then, by commutativity, a — b= (=b) + a = a + (—b).

In particular, letting b=0,a —0=a+ (-0) =a+0=a. O

Proof of (iv). By definition, a = b+ (a — b). Adding —(a — b) to both sides, then a + (—(a — b)) =
(b4 (a—10))+ (—(a—1b)). By associativity, a+ (—(a —b)) = b+ ((a — b) + (—(a —b))). By definition
of —(a—0b), a+ (—(a —b)) =b+ 0. By the zero axiom, a + (—(a — b)) = b. Thus, by uniqueness of
subtraction, —(a — b) = (b — a). O

Proof of (v). Let a — b = 0. Then by definition of subtraction a = b+ 0; thus by the zero axiom,
a = b. This proves one direction of conditionality.

Now, let a = b. Then by the zero axiom, a = b+ 0. Thus by uniqueness of subtraction, a — b = 0.
Thusa—b=0 <= a=0. ([l

Definition 11 (Divisibility). a | b if and only if (3d € Z) such that a - d = b.
Lemma 12 (Properties of Divisibility). In a ring R, Va,b,c,x,y € R:

(i) ala

(ialbANalec = a|(b+c)

(iii) a|b Ab|lc = a]c

(iv) a|b = abc
(v)
Proof of (i). Let a € R. Then by the one axiom, a-1 = a (and 1 € R). Thus by definition of
divisibility, a | a. O

v)a|bANalc = al(bx+cy)

Proof of (ii). Let a | b and a | c. Then, by definition of divisibility, (3m,n € R) a-m =10, a-n = c.
Adding these equations, a - m + a-n = b+ c. By left distribution, a - (m 4+ n) = b+ c¢. By additive
closure, (m +n) € R. Thus, by definition of divisibility, a | (b + ¢). O

Proof of (iii). Let a | b and b | c. By the definition of divisibility, (3k,l € R) a-k =b, b-1 = c. After
combining two equations, we have (a - k) -l = c¢. By associativity, a - (k- 1) = c¢. By multiplicative
closure, k -1 € R. By definition of divisibility, a | c. O

Proof of (iv). Let a | b. Then for some k € R, a-k =b. Then (a-k)-c=0b-c; thus by associativity
a-(k-c)=">b- fe. Thus by definition of divisibility a | be. O

Proof of (vi). Let a | b,a | c. Then a | bx,a | cy by section (iv); then a | (bz 4+ cy) by section (iii). O
3
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3. INTEGERS

Axiom 13 (Order Axioms). Z is a ring containing a non-empty subset Z* C Z with the following
properties:

Additive Closure:  (Ya,b€Z")a+beZ*
Multiplicative Closure: — (Va,b € Z") a-b € Z*
Trichotomy: (Va € ZT) exactly one of the following holds:
a€ZTV a=0V (—a)eZt

Definition 14 (Inequalities). The relations <, >, <, > are defined on Z as follows:

a<b: (Ic€ZT)a+c=b
a<b:  (a<b)V(a=0D)
a>b: b<a

a>b: b<a

Axiom 15 (The Well-Ordering Principle (WOP)). For any set S C ZT with S # (), (3n € S) such
that (Vs € S) n < s. The number n is denoted min{S}.

Definition 16 (Absolute Value). Va € Z: if (—a) € Z*, |a| := —a; else, |a| := a.

Lemma 17 (Z is nontrivial). 1 # 0 in Z. Furthermore, 1 € Z*.

Proof. By Trichotomy, taking a = 0, observe that 0 ¢ Z*. However, Z*T C Z is non-empty. Thus
(Ja € Z)a # 0. Thus Z is not the trivial ring, so 1 # 0 in Z.

Now consider Trichotomy, taking a = 1. As 1 # 0 in Z, we have exactly one of 1 € Z* or
(—1) € Z*. Assume for the sake of contradiction (—1) € Z™, and thus 1 ¢ Z*. Then, as Z* is
closed under multiplication, (—1) - (—=1) = 1 € Z™; contradiction. Thus (-1) ¢ Z*,so 1 € Z*t. O

Lemma 18 (Properties of Inequalities). Va,b,c € Z:

a—-beZ" < a>D

(i) a€eZt < a>0

(iii) a <b < (—a) > (=b) (Similarly): a > b <= (—a) < (=b)

(iv) a<b <= a+c<b+c

(V) a<bANb<c = a<c

vi)a<bAce<d = a+c<b+d

(vii) Exactly one of a < b, a = b, and a > b holds. (Trichotomy for Inequalities)
(viii) a <b A b<a = a = b (Antisymmetry)

(ix) fceZt, thena<b = a-c<b-c

Proof of (i). Let a,b € Z such that a — b € Z*. Then by definition of subtraction, we have some
c=a—0b€Z" where a = b+ c; thus by definition of inequalities, b < a, so a > b. This proves one
direction of conditionality.

Let a,b € Z such that a > b. Then by definition of inequalities, 3¢ € Z* such that a = b+ c.
By uniqueness of subtraction, ¢ = a — b; thus, (a —b) € ZT. This concludes both directions of
conditionality; thus, a — b € ZT <= a > b. O

Proof of (ii). Let a € Z*. Then by properties of subtraction section (iii), a —0 € Z". Thus by
section (i), a > 0. O
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Proof of (iii). Let a < b. Then, (3c € ZT) a+c = b. By uniqueness of negatives, —(a+c) = —b. By
properties of negatives section (v), (—a)+(—c) = —b. Adding c to both sides, then ((—a)+(—c))+c =
—b+ c. By associativity and commutativity, this becomes (—a) + (¢4 (—c)) = —b+ ¢. By negatives
and the zero axiom, thus, —a = —b 4 c¢. Then, as ¢ € ZT, by definition of inequalities we have
—b < —a and thus —a > —b. This proves one direction of conditionality.

Now, let (—a) > (—b); then (—b) < (—a), and so similarly to above —(—b) > —(—a). Then
by properties of negatives section (i), b > a, so by definition of inequalities, a < b. Thus,
a<b <= (—a)> (—b). Substituting b for a, we get b < a <= (—b) > (—a). By definition of
inequalities, we can rearrange to get a > b <= (—a) < (=b). O

Proof of (iv). Let a < b. Then (3z € ZT) a+x = b. Adding c to both sides, (a +z)+c=b+c. By
commutativity and associativity, then (a +¢) + 2 =b+c. ¢ € ZT, so by definition of inequalities,
a 4 ¢ < b+ c. This proves one direction of conditionality.

Now, let a + ¢ < b+ c. Then, similarly to above, (a+ ¢) 4+ (—c) < (b+ ¢) + (—c¢); by associativity,
a+ (c+(—c)) <b+ (c+ (—¢)); thus a < b. Thus,a <b <= a+c<b+ec. O

Proof of (v). By definition of inequalities, a < b means that Ip € Z* such that a + p = b. Similarly,
b < ¢ means that 3¢ € Z* such that b+ ¢ = c¢. By combining both equations, a + p + q = ¢. Then,
by associativity, a + (p + q) = c¢. By additive closure, p + ¢ € Z*. Again, by the definition of
inequalities, a < c. O

Proof of (vi). By definition of inequalities, a < b means that JIp € Z* such that a +p = b. Similarly,
¢ < d means that Jq € Z™* such that ¢ + ¢ = d. By combining both equations, a +c+p+q = b+ d.
Then, by associativity, a + ¢+ (p + q) = b+ d. By additive closure, p + q € Z*. Again, by the
definition of inequalities, a + ¢ < b+ d. O]

Proof of (vii). Let a,b € Z be arbitrary. By Trichotomy, exactly one of (a —b) € Z*, a — b = 0,
or —(a —b) € Z*. In the first case, by section (i), a > b; in the second case, a = b by properties
of subtraction section (v). In the third case, by properties of subtraction section (iv), —(a — b) =
(b — a) € Z*; thus, again by section (i), b > a, so a < b. Again, exactly one of the three cases holds;
that is, exactly one of a > b, a = b, or a < b holds. O

Proof of (viii). By definition of inequalities, a < bisa <bora=b,and a >bisa >bor a=">b. If
a < b, then a # b; if @ > b, then a £ b. By Trichotomy of inequalities, a = b. O

Proof of (iz). Let ¢ € Z™ and a, b € Z such that a < b. Then, (3x € Z") a + x = b. Multiplying ¢
to both sides, (a + x) - ¢ = b - ¢. By commutativity, associativity, and right distribution, we have
a-c+x-c=b-c. We have ¢, z € ZT, so by multiplicative closure, = - ¢ € ZT. Then, by definition
of inequalities, a - ¢ < b - c. g

Lemma 19. Va, b, c€ Z, if a, c € Z" and ab = ¢, then b € Z™.

Proof. We know a,c € Z* and ab = c¢. Assume for the sake of contradiction b ¢ Z*. Thus, either
b =0 or b is negative. If b = 0, we can substitute b in ab = ¢, and we get a -0 = ¢. By multiplication
by zero, we know that a -0 = 0. Thus, ¢ = 0. However, this means that ¢ ¢ Z*. Thus our first
case is disproven and b # 0. In our second case b is negative. Thus, b = —x, where z € Z*. So,
ab = a(—z) = c¢. By associativity, (—z)a = c¢. By properties of negatives section (ii),—(za) = c.
Thus, —(xa) is some number where za € Z*. Thus, —za ¢ Z* and ¢ ¢ Z*. However, this is a
contradiction, so the assumption made in our second case is false. Therefore, b € ZT. ]

5
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Definition 20 (Nonnegative Integers). Z>o = {z € Z | > 0}. This set is referred to as the
nonnegative integers.

Lemma 21 (Generalized WOP). WOP holds for bounded sets of integers in general, beyond just
77 . In particular:

(i) Let S C Z and S # () where (3x € Z) such that (Vs € S) (x < s). Thus, (In € S) such that
(Vs € S) (n < s). That is, any set of integers which is bounded below has a minimum.
(ii) Let S C Z and S # () where (3x € Z) such that (Vs € S) (x > s). Thus, (In € S) such that
(Vs € S) (n > s). That is, any set of integers which is bounded above has a maximum.
(iii) In particular, if S C Z>o and S # (), then S has a minimum element.
(iv) Furthermore, if S contains a minimum, then that minimum is unique. (Similarly, if S
contains a maximum, then that maximum is unique)

Proof of (i). Let S C Z and S # () such that 3z € Z where (Vs € S) z < s. Construct S’ =
{(s—z)+1|se S} Asx<s,wehavex —x <s—x,500<s—x. Thus, 1 < (s—xz)+ 1. As
1 € Z* and 0 < 1, by transitivity, we have 0 < (s — z) + 1. Hence, (Vs € S) (s—xz)+1 € Z*, so
S' CZ*. As S # (0, we have S’ # (), since any given element of S has an image in S’. By WOP, S’
contains a minimum element n’ = (n —x) 4+ 1 for some n € S such that Vs’ = (s —x) +1 € S’, where
n' <. Thus, (n—z)+1 < (s —x)+ 1, which implies (n —z) < (s —x),son+ (—z) < s+ (—x)
and n < s. That is, n € S, and (Vs € S) n < s. Hence, S has a minimum element. O

Proof of (ii). Let S C Z and S # () such that 3z € Z where (Vs € S) x > s. Construct S = {—s |
s € S}. Then (V(—s) € §") (—z) < (—s). Thus S’ has a minimum element (—n) for some n € S
such that (Vs € S) (—n) < (—s). Thus, (Vs € S) n > s, which implies that S has a maximum
element n. O

Proof of (iii). Let S C Z>¢. Then Vz € S, we have x € Z>o; in particular, x > 0. Thus, S is
bounded below, and by section (i), 3n € S such that (Vs € §) n <s. O

Proof of (iv). Let S C Z contain a minimum element s € S such that (Vx € S) s < z. Let s,5
be any two such minima. Then s < s’, and s’ < s. Thus s = s’ - that is, the minimum element is
unique. Similarly, the maximum of a set is unique. O

Lemma 22 (Z is an integral domain). (Va,b € R) ab=0 = a=0V b=0.
Proof. We prove the contrapositive. Let a # 0 and b # 0. By Trichotomy a € Z" or (—a) € Z* and
beZ" or (—b) € Z". There are four cases:
Case 1: a,bc Z*
Then ab € Z™; thus by Trichotomy ab # 0.
Case 2: (—a),be Z*
Then —(ab) = (—a)b € Z; thus by Trichotomy ab # 0.
Case 3: a,(—b) € Z*
Then —(ab) = —(ba) = (—b)a € ZT; thus by Trichotomy ab # 0.
Case 4: (—a),(-b) € (2)*
Then ab = (—a)(—b) € Z; thus by Trichotomy ab # 0.
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Lemma 23 (Multiplicative Cancellation in Z). (Va,b€Z) a#0 A ab=abl = b=V

Proof. We know that ab = ab’. By adding the —al’ to both sides, we get ab+ (—ab’) = ab’ + (—ab’).
By negatives, ab + (—ab’) = 0. By property of negatives, ab + (—ab’) = ab+ (—1)(ab’) = 0. Using
associativity, we get ab + a((—1)b’) = 0. By right distribution, a(b + (—1)b") = 0. By property
of negatives, a(b+ (—1)b') = a(b+ (=b’)) = 0. Then, as Z is an integral domain, either a = 0 or
b+ (=b')=0. But a # 0, so (b+ (=b') = 0. By addition, b+ (=¥') + b = 0+ V. By associativity,
b+t + (=bV) =¥ +0. By negatives, b = b’ + 0. By the zero axiom, b =V'. O

Lemma 24 (NIBZO: No Integer Between Zero and One). (fn € Z) 0 <n < 1.
Proof. By the order axioms Z* is nonempty, and Z™ C Z". Thus, by WOP, Z* has a minimum
element o such that (Vp € Z*) o <p. Then, as 1 € Z*, 0 < 1.

As o € Z", we can multiply, which gives 0- o0 < 0. But by multiplicative closure of Z*, 0-0 € Z™;
thus, by the minimality of 0, 0 < 0- 0.

Hence, o = 0-0. That is, 0-1 = 0-0. As 0o € Z*, by Trichotomy, o # 0; thus we may cancel,
giving o = 1. Therefore, (Va € Z7) 1 < a.

Furthermore, we know that a« € Zt <= a > 0. Thus, (Va € Z) a >0 = a > 1, so by
Trichotomy a ¢ 1. Thus, (Ja € Z) 0 <a < 1. O

Lemma 25. If a,b € Z" and a | b, then a < b.

Proof. Let a,b € Z", a | b. By definition of divisibility, 3k € Z such that a-k = b. If k = 0, by
multiplication by zero, a - 0 = 0; if kK < 0, by properties of negatives, a - k < 0. Thus, £ > 0. By
NIBZO, there is no integer between zero and one, so k > 1. Hence a -k > a - 1. But then, b > a, or
equivalently, a < b. O

4. ProbpucT NOTATION

Definition 26 (Product Notation). Define for a, b, {p;}’_, € Z:
1 ifa>0b

b
B b—1
11r= (Hm) py ifa<b

b c
Lemma 27 (Splitting Product). For {p;}{_,, a <b < ¢, we have (H pi) ( H pl-) sz

i=b+1

i) (1)1}

Suppose for the sake of contradiction S # ). Then, by WOP, (Elc €59)s. (Vs €S c < s. If c=b,

i=a

Proof. Fix a, b, {p;} such that a < b. Let S = {c ezZ*

then ¢ < b+ 1, by definition of inequalities, as 1 € Z™. Thus H pi =1, 80 le 1= le le.

i=b+1 i=a i=a
Therefore we cannot have ¢ # b.

So ¢ > b. Then by NIBZO ¢ > b+ 1; thus ¢ — 1 > b. But we know ¢ — 1 ¢ S, so we must have
b c—1 c—1 b c—1 c—1
(Hm) ( 1T pi) =[] pi- Multiplying by pe, (Hm) ( 11 pz-) “Pe = <Hpi> * Pe; but this
i=a i=b+1 i=a i=a i=b+1 i=a

7
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b c c
simplifies to (H pi> ( H pi> = H pi. Therefore ¢ ¢ S; contradiction. Thus, S = (J; that is, for
i=b+1

b c c
all ¢ € ZT such that ¢ > b, (sz> ( H pi> = sz‘- O
i=a i=a

i=b+1

1=a 1=a

b
Definition 28. For a € Z and b € Z>, define a’ = H a. Observe that this is equivalent to: a® =
i=1
and a® = a - ab! for b > 1.

5. FACTORIZATION

Definition 29 (Prime). For p € Z1, we say that p is a prime if and only if p{ 1 and ged(n,p) =1
Vn € Z where n < p.

Lemma 30 (Euclidean Division). Let a,b € Z and b > 0. Then, 3¢, € Z such that 0 <r < b and
a=bqg+r.

Proof. Let a,b € Z,b > 0. By Trichotomy, there are three cases:

Case 1: a € Z.

Let S={n€Z>o| (3¢ € Z) n =a —bg}. Taking ¢ =0, note a —b-0=0a—0=a € S; thus
S # (0. Then, by WOP (for Z>¢), (3r € S) such that (Vs € S) r <.

Assume for the sake of contradiction » > b. Then r — b € Z>¢. Furthermore, r —b=a—bg—b =
a—blg+1). Asq+1€Z, thus,r—be S. But b€ Z™, sor—b < r; thus r cannot be the minimum
element of S; contradiction. Thus, r < b. As a — bg = r, by definition of subtraction, a = bgq + 7.

Thus, dq,r € Z such that 0 <r < b and a = bg + r.
Case 2: a = 0.

Take g =7r=0; then bg+r=5b-0+0=0 = a. Also note 0 < r < b. Thus here we can find ¢, r.
Case 3: (—a) € Z™.

Then, 3¢, ' such that (—a) = b + 1" and 0 <1’ < b. Hence, —a =bq' + 1’ <bq' +b="0b(¢ +1).
Thus, a + (—a) < a+ b(¢’ + 1). This implies a + b(¢’ + 1) > 0; thus a + b(q¢' + 1) € Z+.

Let S={n€Zx>y| (3¢ € Z n =a—bq}. Recall that a + b(¢' + 1) € ZT. Moreover, note that
a+b(¢d+1)=a+(—(—0(d+1))))=a—(—(b(¢ +1))). Thus, a — (—(b(¢' +1))) € S, 80 S # 0.
Hence, S has a minimum element r. Similar to above, 0 < r < b; thus a = bg + r for 0 < r < b.

O

Definition 31 (Greatest Common Divisor (GCD)). For a,b € Z such that either a # 0 or b # 0,
define

ged(a,b) :=max{d€Z : d|a N d|b}

Lemma 32 (Existence and Uniqueness of GCD). Let a,b € Z such that a # 0V b # 0. Then,
3! ged(a, b) € Z. Moreover, ged(a,b) € ZT.
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Proof. Let a,b € Z such that either a # 0 or b # 0. Without loss of generality, suppose a # 0.

Let D={de€Z|d|aAd|b}. Then, (Vd € D) d < |a|. Hence, D is bounded above in Z. Thus,
by Generalized WOP, D has a unique maximum, so gecd is defined.

For brevity, let d = ged(a, b). Suppose for the sake of contradiction d =0 or (—d) € Z+.

If d =0, then Jk € Z such that a = dk = k - 0, which implies a = 0. Similarly, b = 0, which is a
contradiction to the initial assumption.

If (—d) € Z*, then d < (—d), since (—d) + (—d) € Z" and thus (—d) — d € Z*, which implies
d < (—d). Thus, we may take (—d), which also satisfies (—d) | @ and (—d) | b, yet d < (—d), which
contradicts the maximality of d.

Hence, d € Z7T. O

Lemma 33 (Bézout’s Lemma). For all a,b € Z where a # 0, 3x,y € Z such that ax + by = ged(a, b).
In particular, ged(a,b) = min{d € Z* | (3z,y € Z) d = az + by}.

Proof. Fix a,b€ Z,a#0. Let S={d € Z* | 3x,y € Z) d = ax + by}.
Claim. S # 0.

Proof. By Trichotomy, since a # 0, either a € Z* or (—a) € Z™.
If a € Z*, we take x = 1,y = 0. Thus,
ax+by=a-1+b-0
=a+0=acZ"
which implies S # §).
If (—a) € Z, we take x = —1,y = 0. Thus,

Hence, S # () for this case as well. |

Now, by WOP, (3d € S) such that (Vs € S) d < s. We have d = ax + by for some z,y € Z.
By definition of GCD, we have gcd(a,b) | a and ged(a,b) | b. Then, as d = ax + by for x,y € Z,
by properties of divisibility part (v), ged(a,b) | d.
By Euclidean Division, dg,r € Z,0 < r < d such that a = dg + r. Assume for the sake of
contradiction r > 0. Then:
r=a—dq
=a— (ax + by)q
= a — a(zq) + b(yq)
=a(l —zq) +b(yq) € S
That is, r € S. Hence d < r, as d is the minimum element of S. But r < d; contradiction. Thus
r % 0,s0r=0.
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Therefore, a = dg + 0 = dgq by the zero axiom. By definition of divisibility, d | a. Similarly,
d | b. Moreover, by definition of GCD, we have d < ged(a,b). But recall that ged(a,b) | d. Thus,
ged(a, b) < d, which implies d = ged(a, b).

Thus, given a,b € Z with a # 0, then ged(a,b) = min{d € Z* | (3z,y € Z) d = az + by}. 0
Lemma 34 (Euclid’s Lemma). Let p be a prime and a,b € Z. Then, p | ab implies p | a or p | b.

Proof. Let p | ab and p { a. Then, it suffices to show that p | b. Because p { a, we have that
ged(p,a) = 1. Hence, by Bézout’s Lemma, Jz,y € Z such that ax + py = 1. But then, since p | ab,
Jk € Z such that ab = pk. Observe that abz + pby = b, so pkx + pby = b. Then, p(kz + by) = b, so
p | b, and we are done. O

k

Lemma 35 (Extended Euclid’s Lemma). Let p be a prime. If p | H a;, then at least one of p | a;
i=1

holds, for i € {1,2,...,k}.

k
Proof. Let p | ay - Hai and p{a;. By Euclid’s Lemma, then p | Hf:g a;. Now, let p | ag - f:3 a;

=2
k

and p 1 az. Again, by Euclid’s Lemma, p | Hai. Repeat this process until we find a value

=3
i€{1,2,...,k} such that p | a;. There must be at least one of p | a; holds by Euclid’s Lemma. O

Definition 36 (Prime Factor). Let a € Z and p be a prime number. We say that p is a prime
factor of a if and only if p | a.

Definition 37 (Prime Factorization). A prime factorization of n is an expression of the form
a
n= H pi, where all of the p; are prime.
i=1
Definition 38. Every positive integer n > 1 that is not prime is said to be composite.

Lemma 39 (Composite Numbers). A number is composite if and only if it can be represented as
n = ab, where a, b€ Z* and 1 < a, b < n.

Proof. We first prove the ( =) direction.
Proof of (= ). There must exist some a € Z* with 1 < a < n such that ged(a,n) # 1, since
otherwise n is prime by definition.

Let ged(a,n) = d. If d = n, then n | a, but that contradicts 1 < a < n. Hence, d < n.

Note that d | n implies that 3k € Z such that n = dk. Because n € Z* and d € Z*, by Trichotomy,
we know that k € ZT, since otherwise k = 0 or (—k) € Z" gives a contradiction.

Observe that k # 1 since if £ = 1 then d = n, which is a contradiction. Thus, n = dk where d > 1
and k > 1. Moreover, if d > n, then dk > n, which is a contradiction, so d < n. Similarly, k£ < n,
and we are done. |

Proof of (<=). If a, b € Z* such that 1 < a, b < n and n = ab for fixed n, then ged(n,b) = b > 1,
hence n is not prime; moreover, n > 1, so n is composite. |

n
10
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Lemma 40 (Existence of a Prime Factor). Every integer greater than 1 has a prime factor.

Proof. Let S := {n | p such that p | n where n € Z and n # 1}. Note that S C Z7.

Suppose for the sake of contradiction that S # (). Then, by WOP, S must have a least element,
which we shall denote as n.

If n was prime, then n has n itself as a prime factorization, which is a contradiction. Moreover, n
cannot be 1 by our assumption. Hence, n must be composite. This means that Ja, b € Z such that
n = ab, where 1 < a, b < n.

Because a, b < n, we know that a and b are not in S, by minimality of n. Thus, they have prime
factors, i.e., p | a and ¢ | b, where p and ¢ are primes.

Thus, pq | ab | n, which means p | n. Hence, n has a prime factor, so n ¢ S, which contradicts
our assumption that S # (). Thus, all integers must have a prime factor. O

Lemma 41 (Existence of a Prime Factorization). Every integer greater than 1 has a prime
factorization.

Proof. Let S be the set of positive integers that does not have a factorization as a product of primes.
Assume for the sake of contradiction that S # (). Then, by WOP, S must have a minimum element
n.

If n is prime, then n ¢ S.

If n is not prime, then since n > 1, we know that n is composite, that is, Ja,b € Z* with
1 < a, b < n such that n = ab.

If both @ and b had a factorization as a product of primes, that is,
k l
a = H p; and b= H Qi
i=1 i=1

; if 1<i<k
then define {p/} := P 1 ==t
Qi Hk+1<i<k+l1

i
= gl p%) <i£1p§>

=17
=1

so n has a prime factorization, contradiction.

Then,

Hence, at least one of a and b does not have a prime factorization. Without loss of generality,
suppose a did not have a factorization as a product of primes, which in turn implies ¢ € S. But
1 < a < n, which contradicts the minimality of n. Hence, S = (), and thus every integer greater
than 1 has a prime factorization. O

11
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6. UNIQUE FACTORIZATION THEOREM (UFT)

Definition 42. We say an integer n has a unique prime factorization if given any two prime
factorizations

a b
n=[]pri=]]a @i ¢ prime)
=1 =1

then (i) a = b and (ii) (Vi < a) (3j <b) p; = ¢;. That is, the primes in each product differ from
each other by at most a reordering.

Theorem 43 (Unique Factorization in Z). Every positive integer greater than 1 has a unique prime
factorization.

Proof. Let S be the set of positive integers greater than 1 that do not have a unique prime
factorization. Assume for the sake of contradiction that S # (). Then, by WOP, there exists a least
element of S, which we denote as n, that is,

a b
n= Hpk = H Ak
k=1 k=1
where p;, and g are primes and either (Fk < a) (Al <b) pp = g or a #b.

Case 1: (3k€Z,1<k<a) (I <) pp = q.

Let P C S be the set of positive integers whose prime factorizations fail in this way. Recall that
b

a
Hpi = H ¢;- Hence, we may split the first product into three distinct products, giving
i=1 i=1

i) (1)-1

1=k+1

b
Thus, pk | H%' As pg is prime, by Extended Euclid’s Lemma, we know that (3l € Z, 1 <[ <
i=1
b) vk | @i-
By definition of divisibility, (In € Z) py - n = q;. As pg,q; € Z+, we also have n € Z*, i.e., n > 1.

Assume for the sake of contradiction n > 1. Then if px > ¢, px - 7 > qi, but pr = q;; thus pp < q;.
Note as pg is prime, pg > 1; similarly, therefore, n < ¢;. In summary, ¢, = pi - n, where 1 < pp < q
and 1 < n < ¢. Then q; is composite; contradiction.

Thus, n = 1, which implies py = ¢;. But this contradicts our assumption that (#I < b) pr = q.

Hence, P is empty, so S\ P = S. Indeed, we can assume that, for the factorizations of our
minimum n of S, (Vk < a) (31 <b) pr, = ¢ but a # b. It remains to deal with the other case.

Case 2: a #b.
Without loss of generality, assume a > b.

If b = 0, then H?Zl ¢; = 1, by definition of the product notation. Thus [[{_,p; = 1. But
recall ¢ > b = 0; thus by NIBZO, a > 1. Therefore, by definition of the product notation,

(H?:_ll pz-) - pa = 1; thus p, | 1. But p, is prime, so by definition, p, { 1, which is a contradiction.
Thus b # 0.

12
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Thus b > 0, so by NIBZO b > 1. Then also a > 1. Then by definition of the product notation,
we know that (Hf:_ll pi> P = H?Zl gi- But recall, we above showed (3a’ < b) pg = qu. Then, we
can split the product, giving

i) - 1) 1)1
{111+

QK if k <ad
dk+1 if & Z a/

a'—1 b
Qi> < H Qi> “Ga’
i=1 i=a’+1
b—1
!/
(H qi>  qu
i=a’

. Then we continues simplifying:

Let n/ = (H?:_ll pl-), so that n’ - p, = n. As p, is prime, we have p, > 1, thus n’ < n.

Observe that we may write:

a—1 b—1
' pa = (Hpi) Pa = (Hq£> Pa
i=1 =1

As p, # 1, we may cancel, giving

UDRUD

Recall that @ > b. Then a —1 > b — 1, implying a — 1 # b — 1. Thus, n’ does not have a unique
factorization, yet n’ < n, contradicting the minimality of n.

Therefore, S = (), and consequently, every positive integer greater than 1 has a unique prime
factorization. ]

13
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