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Abstract. We provide an introduction to the field of arithmetic dynamics. We start by defining
fundamental terminology and notation from classical dynamics, including periodic points, wander-

ing points, rational maps, power maps, Chebyshev polynomials, and Lattès maps. Together, we

cover basic machinery from algebraic geometry, number theory, and p-adic analysis, including affine
and projective space, ideals and varieties, and completions of Q. Continuing the discussion, we

discuss dynamics over global fields, ultimately leading to the proof of Northcott’s theorem, involving
Hilbert’s Nullstellensatz. We then discuss pathways emerging from it, centered around the uniform

boundedness conjecture.

All the lonely objects, where do
they all belong?

Joseph H. Silverman

1. Introduction

As does any interesting journey start, we start with some motivation. There are types of math-
ematics that people like to study. Of course, there are just so many mathematical objects. What
do people do with interesting objects? They prove theorems about those objects, sometimes with
additional restrictions. Lots of great mathematics is done in that form, where people restrict their
attention to a very small subset of objects, then prove cool properties that hold within those objects.
But there are also great mathematics that aim to prove general properties that hold within all objects
of that type. In that case, it makes natural sense to look at the family F of objects. For example, as
we will introduce later, one looks at the set of all morphisms Pn → Pn, and try to prove properties
that hold as generally as possible, within those set of objects. But there is a trade-off: too much
zooming out often leads to general, but pretty boring statements; these sets can be too large and
unwieldy. In order to avoid this problem, we study better behaved subsets by adding restrictions.
For instance, there are “too many” maps Pn → Pn, so in dynamics, we restrict our attention to finite
maps Pn → Pn of fixed degree.

In dynamics, we look at the composition of functions and their behavior. For example, consider
the function ϕ(z) = z2 + 1 in the complex plane. Traditional complex dynamics asks the following
questions: “What are the fixed points of ϕ, that is, points z ∈ C∪ {∞} such that ϕ(z) = z? How can
we describe the local behavior near those fixed points? Can we classify periodic points, that is, which
points z ∈ C satisfy ϕn(z) = ϕn+m(z) for some n,m ∈ N? Which points z ∈ C repel the points near
them, that is, they move farther away from z as we iteratively apply ϕ? Which points attract other
points?” These properties of the map ϕ, are often colloquially called the dynamics of ϕ. In order to
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study the dynamics of a map, we consider the orbit of α, which is the set

Oϕ(α) = {ϕn(α) : n ≥ 0}

The principal goal of dynamics is to classify the points α in the set S, according to the behavior of their
orbits Oϕ(α). Within C, this is much of what complex dynamics is devoted to, and if one wants to
study in this direction, an excellent reference is [Mil06]. The topic of this paper, arithmetic dynamics,
instead looks at the dynamics of mappings under an arithmetic setting, such as Q, Zp, or Qp, as
any number theorist would do, asking the same questions as above. However, the nonarchimedean
nature of Qp leads to interesting theories, worth pursuing by itself. We will reach some of the deepest
conjectures and results of interest, but just as how good theories are developed, we start with the
basics.

2. The Basics

First, we define some commonly used notation, and give some basic definitions. Throughout this
paper, we use the standard symbols

N, Z, Q, R, C, Fq, Zp, AN , PN

to represent the natural numbers, integers, rational numbers, real numbers, complex numbers, finite
field with q = pk elements, ring of p-adic integers, N -dimensional affine space, and N -dimensional
projective space, respectively. We do not count 0 as a natural number. Moreover, we utilize the
notation S∗ to denote the set S without zero. For instance, Q∗ is just Q \ {0}, and (Z/pZ)∗ is the
set of integers modulo p without zero. Sometimes, we may also write (Z/pZ)× for the same set, but
this time, to signify the underlying multiplicative group structure of (Z/pZ)∗. Some of the following
definitions are adapted from [Sil07], a standard reference for arithmetic dynamics. In dynamics, we
mostly work with projective spaces (since they have various nice properties), so let’s first define it.

Definition 2.1. Given a vector space V over a field K, the projective space P(V ) is the set of
equivalence classes of V ∗ = V \ {0} with equivalence under scaling, that is, P(V ) = V ∗/∼ where ∼ is
an equivalence relation such that x ∼ y iff x = λy for some nonzero λ.

If V is a topological vector space (TVS), the quotient space P(V ) is also a TVS, equipped with
the quotient topology of the subspace topology of V ∗. For example, this is certainly the case when
K = R or K = C.

Exercise 2.2. Prove that if dimV < ∞, then dimP(V ) = dim(V )− 1.

Indeed, with the above result, when V = Kn+1, we may also write P(V ) as Pn(K) = KPn = PnK.
(For example, CP1 denotes the complex projective line, and RP2 denotes the real projective plane.
The complex projective line CP1 is also known as the Riemann sphere, since P1(C) ∼= S2.)

We also deal with affine spaces, which are Euclidean spaces without a fixed origin (that has “for-
gotten” its origin). To be precise, they are defined as follows.

Definition 2.3. Given a vector space V over a field K, whose underlying set is A, the affine space
A(V ) is the pair (A, V ), that is, a set A together with a vector space V , and a transitive and free
action of the additive group of V on the set A.

The elements of the affine space A(V ) are called points, and the vector space V is said to be
associated to the affine space. As with projective spaces, if V = Kn, we equivalently write A(V ) as
An(K) = KAn = AnK.
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Remark 2.4. Note that affine spaces are contained in projective spaces. For instance, one may obtain
an affine place from a projective plane by removing a single line; conversely, any affine plane has an
extension to a projective plane, namely by adding a line at infinity.

Now, we move on to rational functions, which are the main objects of interest in both classical and
arithmetic dynamics.

Definition 2.5. A rational function ϕ(z) ∈ C(z) is a quotient of polynomials

ϕ(z) =
F (z)

G(z)
=

a0 + a1z + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd

with no common factors; the degree of ϕ, denoted by deg ϕ, is max{degF,degG}.

Definition 2.6. A rational map of degree d between projective spaces is a map ϕ : PN → PM such
that

ϕ(P ) = [f0(P ), . . . , fM (P )]

where f0, . . . , fM ∈ K̄[X0, . . . , XN ] are fully reduced homogeneous polynomials of degree d.

Note that ϕ is defined at P if at least one of the values f0(P ), . . . , fM (P ) is nonzero, since 0 doesn’t
make sense in projective space.

Definition 2.7. A rational morphism ϕ is a rational map that is defined at every point of PN (K̄),
that is, a rational map with ϕ−1(0) = {0}. If the polynomials f0, . . . , fN have coefficients in K, we
say that ϕ is defined over K.

Note that a rational function of degree d naturally induces a rational map of the complex projective
line P1(C), which is just the evaluation map.

Remark 2.8. In dynamics, we generally consider maps with deg ϕ ≥ 2, since degree one maps are
just Möbius transformations ϕ(z) = az+b

cz+d =
(
a b
c d

)
∈ PGL2(C), i.e., automorphisms of P1, whose

behaviors are very well-studied. They can be further classified into four types with respect to the trace
trϕ = a+ d (given that we rescale the numerator and the denominator so that detϕ = ad− bc = 1):
parabolic, elliptic, hyperbolic, and loxodromic. Conversely, the behaviors of maps ϕ with deg ϕ ≥ 2 are
very rich, which is why we are mostly interested in the deg ϕ ≥ 2 case.

Two very important properties of rational maps are that they are continuous and open, that is,
they preserve open sets.

Exercise 2.9. Prove that a rational map is continuous and open, with a rigorous ε − δ argument.
(Recall that a function f : X → Y is an open map if it maps open sets to open sets, that is, for all U
open, f(U) is also open. Conversely, a function is continuous if the preimage of an open set is open,
that is, for all V open, f−1(V ) is also open.)

In order to study the arithmetic properties of points in projective space, we must have a good
notion of “size” for the points, so that we can measure the arithmetical complexity of a point via its
size. Similar to how we defined the degree of a rational function as the maximum of the degrees of
the numerator and the denominator, provided that both the numerator and the denominator are fully
reduced, we define the size (called the “height”) of a point as follows:

Definition 2.10. The height of a point P ∈ PN (K), denoted as H(P ), is defined as

H(P ) := max
i∈J0,NK

|xi|

where P = [x0, x1, . . . , xN ] is homogenized with gcdi∈J0,NK(xi) = 1 and xi ∈ Z, that is, fully reduced
with no common factors.
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In algebraic geometry and dynamics, we typically work with commutative rings, so all rings R are
assumed to be commutative unless specified otherwise.

Definition 2.11. For a ring R, a subset I ⊂ R is called an ideal of R if it is an additive subgroup of
R that “absorbs” multiplication by the elements of R, that is, for every r ∈ R and every x ∈ I, we
have rx = xr ∈ I.

Note that an ideal does not necessarily have to be generated by a single element. Now, it is helpful
to talk about various types of ideals that have properties analogous to numbers.

Definition 2.12. For a ring R, an ideal P ⊊ R is prime if ab ∈ P implies a ∈ P or b ∈ P .

Note that this definition is an extension of the typical Euclid’s lemma: p is prime if p | ab implies
p | a or p | b. This has an ideal analogue: ab ∈ (p) implies a ∈ (p) or b ∈ (p). Indeed, from this,
one can immediately see that all ideals of prime numbers are prime ideals, specifically principal prime
ideals. A principal ideal is simply an ideal generated by a single element.

What about the notion of irreducibility? It is a slightly broader notion that captures prime ideals,
but there are other types of ideals that are irreducible but not prime.

Definition 2.13. For a ring R, an ideal I ⊊ R is irreducible if ∄J,K ⊋ I such that I = J ∩K, that
is, it cannot be written as the intersection of two strictly larger ideals.

Exercise 2.14. Prove that all prime ideals are irreducible, and provide a counterexample for the
reverse implication, that is, find an irreducible ideal that is not prime.

Remark 2.15. Indeed, this notion is in correspondence with the spirit of the distinction between
irreducible numbers and prime numbers when discussing non-UFDs such as Z[

√
−5]. In a UFD, all

irreducibles are prime, so the notion of prime and irreducible coincide. (The other implication, that
is, all primes are irreducible, only requires R to be an integral domain.)

Next, we provide some machinery needed to state the Nullstellensatz, which means, in German,
“the zero-locus theorem.” First, we need the definition of the radical of an ideal.

Definition 2.16. In a ring R, the radical of an ideal I, denoted by rad(I) or
√
I, is defined as

√
I = {r ∈ R : rn ∈ I for some n ∈ N}

Indeed, in algebraic geometry, it is much more convenient to deal with homogeneous polynomials,
and in the same virtue, homogeneous ideals, since they can be scaled, and work more naturally in a
projective setting.

Definition 2.17. For a ring R, an ideal I ⊂ K[X0, . . . , XN ] is homogeneous if I is generated by
homogeneous polynomials.

Moreover, we define the concept of an algebraic variety. As usual, we have the affine case and the
projective case; as such, we have affine varieties as well as projective varieties. First, the affine case:

Definition 2.18. For a field K and S ⊂ K̄[x1, . . . , xn] (we consider the algebraic closure K̄ to capture
all zeros of the polynomial), define the zero-locus Z(S) to be the set of points in AN on which the
functions in S simultaneously vanish, that is,

Z(S) =
{
x ∈ AN : f(x) = 0 for all f ∈ S

}
A subset V ⊂ AN is called an affine algebraic set if V = Z(S) for some S. If the ideal generated by
elements of S is prime, then V is called an affine variety. In that case, we write V = V (I) for the
ideal I = (S) generated by elements of S.
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Analogously, we define a projective variety as follows:

Definition 2.19. For a field K and S ⊂ K̄[X0, X1, . . . , Xn], define the zero-locus Z(S) to be the set
of points in PN on which the functions in S simultaneously vanish, that is,

Z(S) =
{
x ∈ PN : f(x) = 0 for all f ∈ S

}
A subset V ⊂ PN is called a projective algebraic set if V = Z(S) for some S. If the ideal generated
by elements of S is prime, then V is called a projective variety. In that case, we write V = V (I) for
the ideal I = (S) generated by elements of S.

In dynamics, there are several common maps that arise from the study of commuting rational
functions. What are commuting rational functions? We say f commutes with g if f = Θ−1 ◦ g ◦Θ for
some “nice” map Θ (for an actual, rigorous definition, read [Mil04]). Usually, we take the domain to
be a quotient of the complex plane by a lattice Λ, that is, C/Λ, with some points on the boundary,
which are called the exceptional points. The goal of studying commuting rational functions is to,
well, study which rational functions commute, and it is known that commuting rational functions can
be classified into the following trichotomy: power maps, Chebyshev polynomials, and Lattès maps.
The criterion for classification of these maps is by the rank of the lattice Λ; the first two maps have
rankΛ = 1, and the second one has rankΛ = 2.

First, the dth power map is just a function ϕ(z) = zd with d ∈ N. Note that ϕn(z) = zd
n

. Moreover,
ϕn and ϕm commute. In some sense, power maps show behavior that is relatively trivial to analyze,
compared to generic rational functions.

Next, we have Chebyshev polynomials, which could be seen as the first nontrivial examples of com-
muting rational functions (depending on the perspective, the behavior or construction of Chebyshev
polynomials could be trivial as well, only leaving Lattès maps as having interesting, nontrivial proper-
ties). Actually, there are two kinds of Chebyshev polynomials: Chebyshev polynomials of the first kind
(denoted as Tn), and Chebyshev polynomials of the second kind (denoted as Un). They are closely re-
lated, as both arise from the trigonometric multiple angles construction. Intuitively, when one expands
sin(nθ), one obtains an expression of the form sin θ · f(cos θ) where f is a polynomial, and Chebyshev
polynomials of the second kind are exactly derived from such. In this paper, we only consider Cheby-

shev polynomials of the first kind, that is, the unique polynomial satisfying Tn(
z+z−1

2 ) = zn+z−n

2 .

Noting that cos z = eiz+e−iz

2 , we see that Tn(cos θ) = cosnθ. Such a trigonometric interpretation di-
rectly implies that Chebyshev polynomials commute, that is, Tn(Tm(z)) = Tm(Tn(z)). Sometimes, in
dynamics, one rather considers the closely related polynomial Cn(z) = 2Tn(

x
2 ) for convenient reasons,

since Cn(z + z−1) = zn + z−n. The polynomials Cn are called the Vieta-Lucas polynomials [Hor02].
Finally, Lattès maps are defined as follows: the map f = Θ−1 ◦L ◦Θ is said to be a Lattès map, if

rankΛ = 2 (whence the quotient T = C/Λ is a torus), L is an affine automorphism of the torus, and

Θ : T → Ĉ is holomorphic. These maps exhibit the most interesting behaviors, and there is extensive
literature on the behavior of Lattès maps alone; they are crucial to the theory of commuting rational
functions. For deeper reference on Lattès maps and their rather varied behavior, consult [Mil04],
which provides an excellent exposition to Lattès maps and their dynamical behavior.

Now, the time has come for us to define a dynamical system, which is the central object of study
in dynamics.

Definition 2.20. A dynamical system consists of a set S and a function ϕ : S → S, where we consider
the iteration of ϕ:

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

= nth iterate of ϕ

for n ∈ N with ϕ0 being the identity map on S.
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Indeed, as previously noted, we look at the orbit of points.

Definition 2.21. For a given point α ∈ S, the orbit of α is the set

Oϕ(α) = {ϕn(α) : n ≥ 0}
We call a point α to be periodic if ϕn(α) = α for some n ≥ 1. Moreover, the smallest such n is called
the exact period of α. We also call a point α to be preperiodic if some iterate ϕm(α) is periodic.
Indeed, the set of periodic points of ϕ in S are denoted by

Per(ϕ, S) = {α ∈ S : ϕn(α) = α for some n ≥ 1}
and the set of preperiodic points of ϕ in S are denoted by

PrePer(ϕ, S) =
{
α ∈ S : ϕm+n(α) = ϕm(α) for some n ≥ 1,m ≥ 0

}
which is the set of α ∈ S such that Oϕ(α) is finite. For convenience, if the base set S is fixed, we just
write Per(ϕ) and PrePer(ϕ).

Indeed, it makes sense to look at points of period n and exact period n:

Definition 2.22. The set of periodic points of ϕ with period n are denoted by

Pern(ϕ) =
{
α ∈ P1(C) : ϕn(α) = α

}
Moreover, the set of periodic points of ϕ with exact period n are denoted by

Per∗∗n (ϕ) = {α ∈ Pern(ϕ) : α has exact period n}

The reason for this weird Per∗∗n (ϕ) notation is that we also have Per∗n(ϕ), which is the set of
points with formal period n. The consideration for formal periods comes from Galois theory, more
specifically, the theory of cyclotomic polynomials, where the roots of a cyclotomic polynomial are said
to be algebraically indistinguisable. Indeed, it makes sense to consider the following dynamic analogue
of a cyclotomic polynomial:

Φ∗
n(z) =

∏
m|n

(ϕm(z)− z)
µ(n/m)

where µ is the Möbius function. The product makes sense because we are essentially performing PIE
to quotient out all the smaller factors, and only leave the highest factor. Then, the roots of Φ∗

n(z) are
said to have formal period n. The roots of Φ∗

n(z) behave in many ways as if they have exact period
n, although their actual period is smaller than n.

Exercise 2.23. Prove that Φ∗
n(z) is well-defined, that is, ϕ

m(z)− z | ϕn(z)− z whenever m | n and
Φ∗

n(z) is a polynomial.

Exercise 2.24. Prove that

exact period n =⇒ formal period n =⇒ period n

and that the reverse implication does not hold, that is, find a counterexample for each reverse impli-
cation.

In the spirit of discussing heights of points, we need the notion of an absolute value, which assists
in the notion of how “large” a point is. This naturally leads to the discussion of local height functions
and p-adic analysis on primes of bad reduction.

Definition 2.25. An absolute value on a field K is a map | · | : K → R with the following properties:

• |α| ≥ 0, and |α| = 0 if and only if α = 0.
• |αβ| = |α| · |β| for all α, β ∈ K.
• |α+ β| ≤ |α|+ |β| for all α, β ∈ K (triangle inequality).
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In a p-adic setting, we have the ultrametric property, which allows us to give much stronger bounds
for absolute values. This consequently admits various “rigid” theorems that are impossible in regular
metrics such as in Euclidean space. But first, what is a p-adic number?

Definition 2.26. An absolute value is nonarchimedean (or ultrametric) if |x + y| ≤ max{|x|, |y|}
(strong triangle inequality), and called archimedean otherwise.

A metric on K is defined by a distance function d : K ×K → R≥0. Note that an absolute value
induces a metric defined by d(x, y) = |x− y| for all x, y ∈ K.

Definition 2.27. A set on which a metric is defined is called a metric space. A set with a metric
induced by a nonarchimedean absolute value is called an ultrametric space.

Now, we state some properties of absolute values, left as an exercise to the reader.

Exercise 2.28. Let K be an ultrametric space, and let x, y ∈ K. Show that if |x| ≠ |y|, then
|x+ y| = max{|x|, |y|}.

Exercise 2.29. Prove that if x ∈ Q, we have x = pvp(x) a
b , where p ∤ a, b.

Exercise 2.30. Prove that for all x, y ∈ Q, vp(xy) = vp(x) + vp(y).

Exercise 2.31. Prove that for all x, y ∈ Q, vp(x+ y) ≥ min {vp(x), vp(y)}.

Definition 2.32. The p-adic valuation on Q is defined by a function vp : Q → Z∪{∞}. Let x ∈ Q∗.

If x ∈ Z, let vp(x) be the unique positive integer satisfying x = pvp(x)x′ where p ∤ x′ and x′ ∈ Z. Now,
for x ∈ Q∗, writing x = a

b where a, b ∈ Z, define vp(x) = vp(a)− vp(b). Finally, vp(0) = +∞.

Exercise 2.33. Prove that vp is well-defined, that is, vp(x) stays the same regardless of the repre-
sentation of x = a

b with respect to a and b.

Definition 2.34. The p-adic absolute value | · |p : Q → R≥0 is defined as

|x|p =

{
p−vp(x) if x ̸= 0

0 if x = 0

The p-adic absolute value induces the p-adic metric, denoted by dp.

Exercise 2.35. Prove that the p-adic absolute value is a nonarchimedean absolute value on Q.

Definition 2.36. Two absolute values | · |1 and | · |2 on K are said to be equivalent, if there is a
constant c > 0 such that |x|2 = |x|c1 for all x ∈ K.

Now, the following theorem of Ostrowski provides a clean classification of absolute values on Q.

Theorem 2.37 (Ostrowski). Every nontrivial absolute value on Q is equivalent to either the standard
absolute value | · |∞ or one of the p-adic absolute values | · |p.

Proof. For a proof of Ostrowski’s theorem, see pages 56-59 of [Gou20]. □

Moreover, it is known that Ostrowski’s theorem admits a natural extension to number fields, whose
detailed study can be found in [Con07]. In order to understand the statement (not mentioning the
proof), one needs to know a fair amount of algebraic number theory, so although the statement of
the theorem is provided below, it is advised to the interested readers to consult an algebraic number
theory textbook, such as [IR90].

Definition 2.38. For a number field K, we denote the ring of integers of K as OK , which is the ring
of all algebraic integers contained in K.
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Definition 2.39. For a number field K, a prime ideal p ⊂ OK admits a p-adic valuation vp on K:
for x ∈ OK , define vp(x) = n, where n is the greatest integer such that x ∈ pn, defining p0 = OK .
Then, for all α ∈ K, writing α = a

b where a, b ∈ OK , define vp(α) = vp(a)− vp(b).

Theorem 2.40 (Ostrowski for number fields). Every nontrivial absolute value on K is equivalent to
a p-adic, real, or complex absolute value, for some prime ideal p ⊂ OK .

Thus, it makes sense to partition the set of absolute values MK of a field K into M0
K and M∞

K and
say that v ∈ M0

K must be of the form v = vp for some prime ideal p whereas v ∈ M∞
K must be a real

or complex absolute value, where M0
K is the set of nonarchimedean valuations, and M∞

K is the set of
archimedean valuations. This will be helpful later on when we consider all valuations simultaneously
to calculate the global height.

Now, we can talk about completions of Q, which will lead to the construction of Qp from which Zp

can also be obtained. First, we will state a theorem on general completions of fields without proof,
whose proof can be found in [Sto15]. The general idea is to consider all elements generated by limits
of Cauchy sequences, just as how one would construct R from Q (instead of using Dedekind cuts).

Theorem 2.41. Let K be a field with an absolute value | · |. Then, there is a complete field K̄ with
an absolute value | · |′ that extends from K, and K̄ is unique up to isomorphism.

With this, we define the field of p-adic numbers as the completion of Q with respect to the p-adic
metric, denoted as Qp. By Ostrowski’s theorem, we know that the only two completions of Q are Qp

and R, up to isomorphism. Now, from Qp, one can define Zp as the ring of integers of Qp, that is,
Zp = {x ∈ Qp : |x|p ≤ 1}. Note that |x|p ≤ 1 if and only if vp(x) ≥ 0, so this makes sense with the
usual intuition of p-adic integers obtained via Hensel’s lemma, that is, a number taken mod p, p2, p3,
and so on, giving a p-ary number written from right to left.

Going back to dynamics, p-adic valuations will provide a useful ground for studying the local
behavior of rational maps over a number field K/Q. Now, with these notation and definitions, we are
set to discuss some of the most important results in arithmetic dynamics.

3. Dynamics over Global Fields

Naturally, we want to know if the set of preperiodic points has bounded height, that is, with respect
to the morphism ϕ, or the height will rather explode. A famous result of Northcott [Nor50] tells us
that the set of preperiodic points indeed has bounded height.

Theorem 3.1 (Northcott’s theorem). Let ϕ : PN → PN be a morphism of degree d ≥ 2 defined over
a number field K. Then, the set of preperiodic points PrePer(ϕ) ⊂ PN (K̄) is a set of bounded height.

Note that we look at the algebraic closure K̄ instead ofK for PrePer(ϕ), since preperiodic points are
solutions of ϕn(z) = ϕm(z), whose solutions are all contained in K̄ by definition of algebraic closure.
This makes things much nicer, just as how C has elegantly beautiful theorems regarding zeros of
univariate polynomials, compared to the toil and pathology of R, for C is the algebraic closure of R.

In order to prove Northcott’s theorem, we first need some preliminary results, some of which are
cited without proof, since it suffices to only know the statement for our purposes.

Theorem 3.2 (Hilbert’s Nullstellensatz). Let I and J be homogeneous ideals properly contained in
K̄ [X0, . . . , XN ], then

V (I) = V (J) ⇐⇒
√
I =

√
J

Recall that V (I) is the set of points that are killed by polynomials in I, and
√
I is the ideal that

contains all ideals whose kth power is I for some k ∈ N.
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Proof. First, note that one direction is relatively trivial, that is, the
√
I =

√
J =⇒ V (I) = V (J)

direction, since for some point P ∈ V (I) and f ∈ J , we have fn ∈ I for some n ∈ N, so fn(P ) = 0,
thus f(P ) = 0, implying P ∈ V (J). This implies that V (I) ⊂ V (J), and vice versa. The other
direction typically needs some techniques, and although there are some proofs that avoid it, this is
beyond the scope of this paper, so we leave it to the interested reader to look up the proof. For
reference, some often cited proofs are in [Art98] and [AM69]. □

For ease of notation, we define the following shorthand notations.

Definition 3.3. For P = [x0, x1, . . . , xN ] ∈ PN (K) and any absolute value v ∈ MK , write the absolute
value of a point to be

|P |v = max
i

|xi|v
More generally, define the absolute value of a polynomial

f(X0, . . . , XN ) =
∑

i0,...,iN

ai0...iNXi0
0 . . . XiN

N

to be
|f |v = max

i0,...,iN
|ai0...iN |v

Further, if ϕ = [f0, . . . , fM ] is a collection of polynomials, let |ϕ|v = maxj |fj |v.
Note that the height of a point P ∈ PN (K) can be written in the form

H(P ) =

( ∏
v∈MK

|P |nv
v

)1/[K:Q]

We define the height of a polynomial f or a collection of polynomials ϕ similarly,

H(f) =

( ∏
v∈MK

|f |nv
v

)1/[K:Q]

and also

H(ϕ) =

( ∏
v∈MK

|ϕ|nv
v

)1/[K:Q]

Following the notation of [Sil07], we define δv(m) as follows, which lets us write a uniform version
of the triangle inequality as

|x1 + · · ·+ xm|v ≤ δv(m)max {|x1|v , . . . , |xm|v}

Definition 3.4. For any absolute value v ∈ MK and any number m, we set

δv(m) =

{
m if v ∈ M∞

K (i.e., if v is archimedean),

1 if v ∈ M0
K (i.e., if v is nonarchimedean).

With these definitions, we state a lemma that will almost immediately imply Northcott’s theorem:

Lemma 3.5. Let ϕ : PN (K̄) → PM (K̄) be a morphism of degree d. Then, there exist constants
C1 = C1(ϕ) and C2 = C2(ϕ) with C1, C2 > 0, such that

C1 ≤ H(ϕ(P ))

H(P )d
≤ C2

for all P ∈ PN (K̄), or equivalently, H(ϕ(P )) = Θ(H(P )d), using asymptotic notation.
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Intuitively, this means that a morphism of degree d raises the height to the dth power.

Proof. Let P = [x0, . . . , xN ] ∈ PN (K) be a rational point, and f ∈ K [X0, . . . , XN ] a homogeneous
polynomial of degree d. Then, for any v ∈ MK we can estimate

|f(P )|v =

∣∣∣∣∣∣∣∣
∑

i0,...,iN≥0
i0+···+iN=d

ai0...iNxi0
0 . . . xiN

N

∣∣∣∣∣∣∣∣
v

≤ δv(# of terms) max
i0,...,iN

∣∣ai0...iNxi0
0 . . . xiN

N

∣∣
v

The number of terms in the sum is equal to at most the number of monomials of degree d in N +1
variables, which is, by stars and bars,

(
N+d
d

)
. Continuing with the computation, we find that

|f(P )|v ≤ δv

((
N + d

d

))
max

i0,...,iN
|ai0...iN |v max

i0,...,iN
max

j∈J0,NK
|xj |i0+···+iN

v

= δv

((
N + d

d

))
|f |v|P |dv

Applying this for f0, f1, . . . , fN and taking the maximum again, we get

|ϕ(P )|v ≤ δv

((
N + d

d

))
|ϕ|v|P |dv

Now, raising this to the nv
th power, then multiply over all valuations v ∈ MK , we get∏

v∈MK

|ϕ(P )|nv
v ≤

∏
v∈MK

δnv
v

((
N + d

d

)) ∏
v∈MK

|ϕ|nv
v |P |d·nv

v

Taking the [K : Q]th root, we obtain

H(ϕ(P )) ≤
(
N + d

d

)
H(ϕ)H(P )d

recalling ∏
v∈MK

δv(a)
nv =

∏
v∈M∞

K

anv = a
∑

v∈M∞
K

nv = a[K:Q]

This gives the desired constant upper bound for H(ϕ(P ))
H(P )d

. For the lower bound, take ϕ be a morphism,

then we may write ϕ = [f0, . . . , fM ] for homogeneous polynomials f0, . . . , fM which do not have any
common zeros in PN (K̄), as we can clear all common factors. This implies that the ideals (f0, . . . , fM )
and (X0, . . . , XN ) in K̄[X0, . . . , XN ] have the same algebraic set, that is, the empty set. Now, by the

Nullstellensatz, those two ideals have the same radical, that is, X0, X1, . . . , XN ∈
√
(f0, f1, . . . , fM ),

thus ∃e = maxi ei such that Xei
i ∈ (f0, . . . , fM ), implying Xe

i ∈ (f0, . . . , fM ). By this, we know that
there are homogeneous polynomials gij ∈ K̄[X0, . . . , XN ] such that Xe

i =
∑

j∈J0,MK gijfj for each

i ∈ J0, NK. Note that deg gij = e− d since deg fj = d for all j. Evaluating this at P = [x0, . . . , xN ] ∈
PN (K), we have

xi = gi0(P )f0(P ) + gi1(P )f1(P ) + · · ·+ giM (P )fM (P )
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for all 0 ≤ i ≤ N . Now, estimating v-adic absolute values, we have

|P |ev = max
0≤i≤N

|xi|ev

= max
0≤i≤N

∣∣∣∣∣∣
∑

j∈J0,MK

gij(P )fj(P )

∣∣∣∣∣∣
v

≤ δv(M + 1) max
(i,j)∈J0,NK×J0,MK

|gij(P )fj(P )|v

≤ δv(M + 1) max
(i,j)∈J0,NK×J0,MK

{
δv

((
N + e− d

e− d

))
|gij |v |P |e−d

v |fj(P )|v

}
≤ δv

(
(M + 1)

(
N + e− d

e− d

))(
max

(i,j)∈J0,NK×J0,MK
|gij |v

)
|P |e−d

v |ϕ(P )|v

With this, we have some constant C = C(M,N, d, e) = (M+1)
(
N+e−d
e−d

)
, and letting |g|v = maxi,j |gij |v,

we get

|P |dv ≤ δv(C)|g|v|ϕ(P )|v
and as done before, we take the nv

th power, then multiply over all valuations v ∈ MK , and finally
take the [K : Q]th root, which gives H(P )d ≤ CH(g)H(ϕ(P )), where H(g) is a constant with respect

to P . Indeed, this gives the desired constant lower bound for H(ϕ(P ))
H(P )d

, and we are done. □

Lemma 3.5 tells us that a morphism ϕ of degree d basically sends the height H(P ) to approximately
the dth power, which tells us that H acts like a multiplicative function. Regarding notation, it is often
easier to work with additive functions instead, since otherwise we have to write power towers all the
time; nobody likes to do that. This prompts the following definition:

Definition 3.6. The logarithmic height, with respect to K, is the function hK : PN (K) → R such
that hK(P ) = logHK(P ). Analogously, the absolute logarithmic height is the function h : PN (Q̄) → R
where h(P ) = logH(P ).

Using this notation, Lemma 3.5 is just h(ϕ(P )) = dh(P ) + O(1). Now, we are ready to prove
Northcott’s theorem.

Proof of Theorem 3.1. From Lemma 3.5, we know that h(ϕ(P )) ≥ dh(P ) − C for some constant
C = C(ϕ) and all points P ∈ PN (K̄). Inductively applying this to P , ϕ(P ), ϕ2(P ), . . . , ϕn−1(P ) gives

h(ϕn(P )) ≥ dnh(P )− C(1 + d+ d2 + · · ·+ dn−1) ≥ dnh(P )− dnC

and thus h(ϕn(P )) ≥ dn(h(P )− C). Since P ∈ PrePer(ϕ), we know that ∃n, k with n ≥ 0 and k ≥ 1
such that ϕn(P ) = ϕn+k(P ). Hence, from h(ϕn(P )) ≥ dn(h(P ) − C), substituting ϕn(P ) in place of
P , we get

h(ϕn(P )) = h(ϕn+k(P )) ≥ dk(h(ϕn(P ))− C)

thus

h(ϕn(P )) ≤ dk

dk − 1
C ≤ 2C

Now, from the original equation

h(P ) ≤ h(ϕn(P )) + dnC

dn

combining this with the previous equation, we get

h(P ) ≤ 2C + dnC

dn
≤ 3C
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Thus, for some C = C(ϕ), we know that h(P ) is bounded, and so is H(P ), as desired. □

Now, with the following lemma, the set of preperiodic points is finite, and further, the set of
preperiodic points of all finite field extensions of bounded degree is finite as well.

Lemma 3.7. Let K/Q be a number field, and fix constants B and D. Then, the set of points{
P ∈ PN (Q̄) : H(P ) ≤ B and [Q(P ) : Q] ≤ D

}
is finite.

Proof. The proof of this lemma needs Galois theory, which is beyond the scope of this paper. For
reference, consult the proof of Theorem 3.7 of [Sil07]. Essentially, one looks at the height H(P ) for
each individual point P ∈ PN , views at each coordinate xi of P , and gives an upper bound for H(xi)
with respect to B, that is, one gets H(xi) ≤ BN . This means that it remains to prove that the set

{α ∈ Q̄ : H(α) ≤ B and [Q(α) : Q] = d}

is finite. For this, one considers all Galois conjugates of α, all of which have the same height because
they are algebraically indistinguishable (see Theorem 3.6 of [Sil07]), looking at the minimal polynomial
of α with coefficients in Q, written as Fα(X) = Xd + a1X

d−1 + · · · + ad ∈ Q[X]. Then, one uses
the uniformized version of the triangle inequality to get a bound on |ak|v, after which the usual
lifting to the nv

th power, multiplying over all valuations, and taking the dth root gives a bound on
H([1, a1, . . . , ad]). Finally, since there are only finitely many Q-rational points in projective space
with bounded height, the set of Fα(X) is finite, thus the set of α is also finite, which finishes. □

Indeed, it is possible to give explicit bounds for
∣∣PrePer (ϕ,PN (K)

)∣∣ in terms of ϕ, and there are
several results on this, especially when N = 1. The above method of proving Northcott’s theorem
was, in a sense, global, but a local method of using primes of (sufficiently) good reduction would work
equally well in proving Northcott’s theorem.

Let’s take a brief moment to sum up what we have until now. Theorem 3.1 tells us that the height
of preperiodic points is bounded by a constant that is solely dependent on the morphism ϕ. Can we
do any better? Is there a universal upper bound that works for any morphism of fixed degree, or
even bounded degree? The following conjecture, still open at the time of writing this paper, asks this
question.

Conjecture 3.8 (Uniform boundedness conjecture). Fix a number field K/Q with [K : Q] ≤ D, and
consider all finite morphisms ϕ : PN → PN defined over K with deg ϕ = d for some fixed d. Then,
there is a universal constant C = C(d,N,D) such that∣∣PrePer (ϕ,PN (K)

)∣∣ ≤ C

Indeed, even the simplest case, that is, (d,N,D) = (2, 1, 1), is not known; for more special cases,
such as the quadratic ϕ(z) = z2 + c, consult [Sil07]. This conjecture is of critical importance, because
it would mean that the global structure of preperiodic points is systematically limited by the mere
choice of degrees of the morphism ϕ itself, the space PN , and the finite field extension [K : Q]. Some
further questions that may arise from this conjecture would be on the analysis of global structure of
the set of preperiodic points, given (d,N,D), and linking that set of preperiodic points back to its
geometry. The ramifications of the proof or disproof of this conjecture (or even a partial one) would
be truly manifold.



A GENTLE INTRODUCTION TO ARITHMETIC DYNAMICS 13

References

[AM69] Michael Francis Atiyah and I. G. MacDonald, Introduction to commutative algebra., Addison-Wesley-Longman,

1969.

[Art98] Michael Artin, Algebra, Birkhäuser, 1998.
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