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Hypergeometric Functions

Jiwu Jang

June 19 – 30, 2023

These are the notes I’ve taken for a series of lectures on hypergeometric functions,
given by Brian Grove, at the 2023 Ross Mathematics Program at Otterbein College.

References

• Poonen’s notes on Arithmetic Geometry

• Silverman-Tate - Rational Points on Elliptic Curves (UTM, for beginners)

• Silverman - The Arithmetic of Elliptic Curves, Advanced topics in the Arithmetic
of Elliptic Curves (GTM, quite hard)

§1 Introduction

Here are some elementary expansions of commonly used functions, which would be helpful
for later (as typical, we assume x ∈ R):

sin(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

cos(x) =

∞∑
k=0

(−1)k
x2k

(2k)!

tan−1(x) =

∞∑
k=0

(−1)k
x2k+1

2k + 1
where x ∈ [−1, 1]

− ln(1− x) =
∞∑
k=0

xk+1

k + 1

ex =
∞∑
k=0

xk

k!

Now, our goal is to find a “master power series” of some sort.

Definition 1.1 (Pochhammer symbol). Let y ∈ Q and k ∈ N. Then define the rising
factorial as

(y)k := y(y + 1) . . . (y + k − 1)

where (y)0 := 1. (This is also called the Pochhammer symbol.)
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Definition 1.2. Let a, b, c ∈ Q with c /∈ Z≤0. Define the 2F1 hypergeometric function to
be

2F1

[
a b

c
; z

]
:=

∞∑
k=0

(a)k(b)k
(1)k(c)k

zk

with z ∈ C with ∥z∥ < 1. (By convention, there is always an implicit (1)k.)
If 1 + c > a+ b, then the 2F1 hypergeometric function is defined when ∥z∥ = 1.

Remark. The condition c /∈ Z≤0 is there because we don’t want to divide by zero :P

Example 1.3

Let a = b = c = 1, then we get 2F1

[
1 1
1 ; z

]
=
∑∞

k=0 z
k, the geometric series.

Claim — tan−1(x) = x · 2F1

[
1 1

2
3
2

;−x2
]
.

Proof. Note that tan−1(x) =
∑∞

k=0(−1)k x2k+1

2k+1 where x ∈ [−1, 1]. Moreover,

x · 2F1

[
1, 12
3
2

;−x2
]

=
∞∑
k=0

(1)k(
1
2)k

(1)k(
3
2)k

(−1)kx2k+1

=
∞∑
k=0

(−1)kx2k+1

2k + 1

hence we are done.

Example 1.4

Let x = 1, then
π

4
= 2F1

[
1 1

2
3
2

;−1

]
.

Definition 1.5. In general, we define the generalized hypergeometric function (GHF) to
be

nFn−1

[
a1 a2 a3 . . . an
b2 b3 . . . bn

; z

]
:=

∞∑
k=0

(a1)k(a2)k(a3)k, . . . , (an)k
(1)k(b2)k(b3)k, . . . , (bn)k

zk

Remark. This is often called the sum definition of the hypergeometric function. (As you
would’ve probably guessed, there is an integral definition as well.)
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Example 1.6

Here’s another example of a hypergeometric function:

3F2

[
a1 a2 a3
b2 b3

; z

]
:=

∞∑
k=0

(a1)k(a2)k(a3)k
(1)k(b2)k(b3)k

zk

Remark. Application of hypergeometric functions on elliptic curves.

§2 Elliptic curves

Definition 2.1. An elliptic curve over Q is an equation of the form y2 = x3 + ax+ b
(whose discriminant is ∆ = −16(4a3 + 27b2) ̸= 0), also satisfying the following properties:

• nonsingular

• projective

• existence of a Q-rational point

Definition 2.2. A singularity is either a node (there exists a point with an “X-like”
derivative) or a cusp (the curve is not smooth).

Example 2.3

y2 = x3 + x is nonsingular (∆ = −64 ̸= 0).

For what comes below, let k be a field.

Definition 2.4. Define the affine n-space as An(k) = k
n.

Remark. Technically you need more than this, but this suffices for our purposes.

Definition 2.5. Define the projective n-space as

Pn(k) = k
n+1 − {0}⧸∼

where ∼ is some equivalence relation and (x0, . . . , xn) = λ(y0, . . . , yn) and λ ∈ k−{0} is
the determinant of ∼.

We want to make the equation for the elliptic curve to be nice, that is, to make the
equation respect the projective n-space.

Remark. Goal: write a homogeneous equation for the elliptic curve.

Definition 2.6 (Homogenization). We send x 7→ x
z and y 7→ y

z , where z ̸= 0. This
homogenizes the equation.
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Example 2.7

For y2 = x3 +Ax+B, it becomes y2z = x3 +Axz2 +Bz3, so it’s homogenized.

Example 2.8

Why z ̸= 0? In projective space Pn(k), we don’t have (0, 0, 0).
Let z = 0, in our previous example, then x3 = 0 =⇒ x = 0, so we get O = (0, 1, 0),

the point at infinity.

Definition 2.9. Let E : y2 = x3 +Ax+B. Then, define

E(Q) = {(x, y) ∈ Q2 satisfies E} ∪ {O}

Theorem 2.10 (Bézout’s theorem)

For a line L, we have that L ∩E has exactly 3 intersection points (provided that we
count multiple points and point at infinity).

Theorem 2.11

E(Q) is an abelian group.

Proof. By Bézout’s theorem, we call P ⋆ Q the third point on the line with P , Q.
Then, we take the second intersection point of the tangent of P ⋆ Q as P +Q, that is,

P +Q = O ⋆ (P ⋆ Q)

Then, since the line-point labeling is not order-dependent, it is obviously abelian.

Lemma 2.12

The identity of E is the point at infinity O.

Proof. Obviously P +O = O ⋆ (P ⋆O) = P .

Now, obviously we want P + (−P ) = O.

Lemma 2.13

The inverse of P , denoted as (−P ), is constructed as follows:
We take the tangent line from O, whose intersection is P ⋆ (−P ).

Proof. Note that we have

P + (−P ) = O ⋆ (P ⋆ (−P )) = O

Thus, by construction, inverses are unique.
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Remark. No one actually cares about the underlying lines once we prove that they form a
group.

Definition 2.14. The Legendre form of E is the following:

y2 = x(1− x)(1− λx)

where λ ∈ Q \ {0, 1}.

Definition 2.15. An alternative form is to take x 7→ 1
λx and y 7→ 1

λy, thus

y2 = x(x− 1)(x− λ)

Definition 2.16. Let s ∈ C. Define

Γ(s) =

∫ ∞

0
ts−1e−tdt

for ℜ(s) > 0. An alternative definition is

Γ(s) = lim
k→∞

ks−1k!

(s)k

for s ∈ C \ {Z≤0}. (Exercise: Prove that these two definitions are indeed equivalent.)

Example 2.17 (Facts about Γ(s))

We have the following facts about Γ(s):

• Γ(1) = 1

• Γ(s+ 1) = sΓ(s) for s ∈ C \ {Z≤0} (functional equation)

• Γ(k + 1) = k!

• Γ(a+ k) = (a)kΓ(a)

• 2F1

[
a b

c
; z

]
=

∞∑
k=0

Γ(a+ k)Γ(b+ k)Γ(c)

Γ(a)Γ(b)Γ(c+ k)
· 2

k

k!

• Γ(s)Γ(1− s) =
π

sin(πs)
, where s ∈ C \ Z

• (1− z)−a =
∞∑
k=0

(a)k
k!

for |z| < 1

• (a)k =
Γ(a+ k)

Γ(a)

• π = Γ

(
1

2

)2

= B

(
1

2
,
1

2

)

Exercise 2.18. Prove the above facts.
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Definition 2.19. Define B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, for ℜ(x),ℜ(y) > 0.

Exercise 2.20. Prove that B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
for x, y > 0.

Theorem 2.21 (Differential forms of elliptic curves)∫ 1

0

dx√
x(1− x)(1− λx)

= π · 2F1

[ 1
2

1
2

1
;λ

]
for λ ∈ Q \ {0, 1}.

Proof. The proof is as follows:∫ 1

0
(x(1− x))−

1
2 (1− λx)−

1
2dx

=

∫ 1

0
(x(1− x))−

1
2

[ ∞∑
k=0

(12)k

k!
(λx)k

]
dx

=

∞∑
k=0

(12)k

k!
λk

∫ 1

0
xk−

1
2 (1− x)−

1
2dx

=

∞∑
k=0

(12)k

k!
λk

∫ 1

0
xk+

1
2
−1(1− x)

1
2
−1dx

=

∞∑
k=0

(12)k

k!
λkB

(
k +

1

2
,
1

2

)

=
∞∑
k=0

(12)k

k!

Γ
(
k + 1

2

)
Γ
(
1
2

)
Γ(k + 1)

λk

=
∞∑
k=0

(12)k

k!k!
λkΓ

(
k +

1

2

)
Γ

(
1

2

)

= Γ

(
1

2

)2 ∞∑
k=0

(
1
2

)
k

(
1
2

)
k

k!k!
λk

= π · 2F1

[ 1
2 ,

1
2

1
;λ

]
and we are done.

Example 2.22

We denote 2P1

[
1
2

1
2

1
;−1

]
= B(12 ,

1
2) · 2F1

[
1
2

1
2

1
;λ

]
.

Definition 2.23. Define 2F1

[
a b
c ; z

]
:= B(b, c− b) · 2P1

[
a b
c ; z

]
.
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Assume c > b, then

2P1

[
a, b

c
; z

]
=

Γ(b)Γ(c− b)

Γ(c)
· 2F1

[
a, b

c
; z

]
=⇒ 2P1

[
a, b

c
; z

]
=

∫ 1

0
tb−1(1− t)c−b−1(1− 2t)−adt when z ∈ C \ [1,∞)

=⇒ 2F1

[
a, b

c
; z

]
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− 2t)−adt

Theorem 2.24 (Gauss)

If c > b and c− a− b > 0, then

2F1

[
a b

c
; 1

]
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

Proof. By Abel continuity theorem, letting z → 1−,

2F1

[
a, b

c
; 1

]
=

Γc

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)(c−a−b)−1

=
Γ(c)

Γ(b)Γ(c− b)
B(b, c− a− b)

=
Γ(c)

Γ(b)Γ(c− b)
· Γ(b)Γ(c− a− b)

Γ(c− a)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

hence we are done.

Example 2.25

Let a = 1
2 , b =

1
2 , c =

3
2 . Then, since Γ(12) =

√
π and Γ(s+ 1) = sΓ(s), we have

2F1

[ 1
2

1
2

3
2

; 1

]
= Γ

(
3

2

)
Γ

(
1

2

)
=

π

2

hence Γ
(
3
2

)
=

√
π
2 .

Theorem 2.26 (Pfaff transformation)

2F1

[
a b

c
;x

]
= (1− x)−a

2F1

[
a c− b

c
;

x

x− 1

]
.

Proof. We have 2F1

[
a b
c ;x

]
= Γ(c)

Γ(b)Γ(c−b)

∫ 1
0 tb−1(1− t)c−b−1(1− 2t)−adt.
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Let t 7→ 1− s, then

2F1

[
a, b

c
;x

]
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
sc−k−1(1− s)b−1(1− x)−a(1 + s(

x

1− x
))−a

= (1− x)−a
2F1

[
a, c− b

c
;

x

x− 1

]
and we are done.

Theorem 2.27 (Euler)

2F1

[
a b

c
;x

]
= (1− x)c−a−b

2F1

[
c− a c− b

c
;x

]
.

Theorem 2.28 (Binet’s formula)

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)

Exercise 2.29. Prove F−n = (−1)n−1Fn. (Use Binet’s formula or induction)

Remark. Hypergeometric functions are recursive by nature.

Theorem 2.30 (Dilcher)

Let a = 1−n
2 and z =

√
5. Then,

2F1

[ 1−n
2 , 1− n

2
3
2

; 5

]
=

1

2n
√
5

[
(1 +

√
5)n − (1−

√
5)n
]

=⇒ Fn =
n

2n−1
· 2F1

[ 1−n
2 , 1− n

2
3
2

; 5

]

Here are some other folklore theorems, mainly for fun:

Theorem 2.31

2F1

[
a a+ 1

2
3
2

; z2
]
=

1

2z(1− 2a)

[
(1 + z)1−2a − (1− z)1−2a

]

Theorem 2.32

2F1

[
a a+ 1

2
1
2

; z

]
=

1

2

[
(1 +

√
z)−2a + (1−

√
z)−2a

]

Exercise 2.33. For Cn =
1

n+ 1

(
2n

n

)
, show that Cn = 2F1

[
1− n − n

2
; 1

]
.
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Proof. Expand by definition, then represent the summation as

n∑
k=0

(
n
k

)(
n

n−k−1

)
n

which is just
(2nn )
n+1 by Vandermonde’s identity.

§3 Relation with the Riemann zeta function

Definition 3.1 (Riemann, 1859). Define the Riemann zeta function as

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− 1
ps

for ℜ(s) > 1.

Example 3.2 (Basel problem)

For example, ζ(2) = π2

6 .

Note that π = 2F1

[
1 1

2
3
2

;−1

]
, so

ζ(2) =
1

6

(
2F1

[
1 1

2
3
2

;−1

])2

Definition 3.3. Let B0 = 1 and

n−1∑
k=0

(
n

k

)
Bk = 0.

B1 = −1
2 , B2 =

1
6 , . . . .

Exercise 3.4. Prove that B2k+1 = 0 for k ≥ 1.

We may write ζ(2k) =
(−1)k+1B2k(2π)

2k

2(2k)!
for k ∈ N.

Remark. Special ζ values ↔ Bernoulli numbers
Byrd↔ Fibonacci numbers

Dilcher↔ Truncated

pFq’s.

Theorem 3.5 (Byrd)

If N ≥ 0, then

F2N+2 = 2
N∑
k=0

A2k,NB2k

where

A2k,N =
N−k∑
n=0

(
2N + 1− n

n

)(
2N + 1− 2n

2k

)
1

2N − 2n− 2k + 2

9
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We also have B2 =
F4
2 − 4

3 and

F4 =
1

2
2F1

[−3
2 ,−1
3
2

; 5

]
=⇒ B2 =

1

4
2F1

[−3
2 ,−1
3
2

; 5

]
− 4

3
=⇒ ζ(2)

=

(
1

4
2F1

[−3
2 ,−1
3
2

; 5

]
− 4

3

)
·

(
2F1

[−1, 12
3
2

;−1

])2

thus

ζ(4) =

64

3
2F1

[−3
2 − 1
3
2

; 5

]
− 11392

45
·

(
2F1

[
1 1

2
3
2

;−1

])4


and by using ζ(s) = ζ(1− s) and ζ(−k) =
(−1)k+1Bk+1

k + 1
, we have

ζ(−1) =
2

3
− 1

8
· 2F1

[−3
2 ,−1
3
2

; 5

]
= − 1

12

ζ(−3) =
89

120
− 1

8
· 2F1

[−3
2 ,−1
3
2

; 5

]
=

1

120

Example 3.6

We have Lp ≡ 1 (mod p) and Fp ≡
(p
s

)
(mod p) (we can relate it to Bk, then to

ζ(s) as well.). The relation chain is basically 2F1 → Fn → Bk → ζ.

Example 3.7 (pFq in the p-adics)

2F1

[ 1
2

1
2

1
;x

]
p−1

=

p−1∑
k=0

(12)k(
1
2)k

k!k!
xk.

Lemma 3.8

The multiplicative group of a field is cyclic.

Definition 3.9. Let φ : G → H and χ : F×
p → C× be a character.

Example 3.10

Let p = 5, that is, in F×
5 . Then, χ : F×

5 → C×. χ(1) = 1, χ(2) = i, χ(3) = −i,
χ(4) = χ(2)χ(2) = −1.

Example 3.11

One example of a character is the trivial character ε : F×
p → C×, where ε ≡ 1.

10
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Example 3.12

The Legendre symbol ϕ is a character.

Example 3.13”F×
p is the group of characters on F×

p .

Lemma 3.14

There are two different types of character sums:

• Fix χ. Then, ∑
q∈F×

p

χ(q) =

{
p− 1 χ = ε

0 otherwise

• Fix q ∈ F×
p . Then,

∑
χ∈F×

p

χ(q) =

{
p− 1 q = e

0 otherwise

Example 3.15

For a1 =
1
2 , we have χ = ω

p−1
2 = ϕ, which is the Legendre symbol.

Example 3.16

For a1 =
3
4 , we have χ = ω

3(p−1)
4 = η.

§4 Finite fields

Definition 4.1. Let ω be a generator of”F×
p , that is,”F×

p = ⟨ω⟩

Then, define A := ω(p−1)a and B := ω(p−1)b.

The following are the finite field analogs of classical hypergeometric functions:

11
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Classical Finite fields

a ∈ Q χ = ω(p−1)a

−a χ

Γ(a) =

∫ ∞

0
ta−1e−tdt g(A) =

∑
x∈F×

p

A(x)ζ×p where A(a) = ω(p−1)a

Γ(a)Γ(1− a) =
π

sin(πa)
g(A)g(A) = A(−1)p if A ̸= ε

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt J(A,B) =

∑
x∈F×

p

A(x)B(1− x)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
J(A,B) =

g(A)g(B)

g(AB)
if AB ̸= ε

xa A(x)
a+ b AB

Table 1: Finite field analogs of classical hypergeometric functions.

Theorem 4.2 (Beukers, Coher, Mellit, 2015)

A hypergeometric function over Fp looks like:

Hp

[
a, b

c
;λ

]
:=

p−2∑
k=0

g(Aωk)g(Bωk)g(Cωk)

g(ε)g(A)g(B)g(C)
χ(λ)

=
1

1− p

∑
x∈”F×

p

g(Ax)g(Bx)g(Cx)

g(ε)g(A)g(B)g(C)
χ(λ) where x = ωk

=
1

J(B,CB)

∑
x∈F×

p

B(x)CB(1− x)A(1− λx)

Definition 4.3. Over Fpr , we define Φ(x) = ζ
Tr(x)
p , where Tr(x) = x+ xp + · · ·+ xp

r−1
.

Theorem 4.4

We have g(A)g(A) = A(−1)p− (p− 1)δ(A), where

δ(A) =

{
1 if A = ε

0 otherwise

12
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Proof. Let Φ(x) = ζ×p . Then,

g(A)g(A) =
∑
x∈F×

p

A(x)Φ(x) ·
∑
y∈F×

p

A

(
1

y

)
Φ(y)

=
∑

x, y∈F×
p

A

(
x

y

)
Φ(x+ y)

=
∑

x, t∈F×
p

A(t) Φ

(
x

(
1 +

1

t

))
where t =

x

y

=
∑

t∈F×
p , t ̸=−1

A(t)
∑
x∈F×

p

Φ

(
x

(
1 +

1

t

))
+A(−1)

∑
x∈F×

p

Φ(0)

= A(−1) +A(−1)(p− 1)

= A(−1) · p

since ∑
t∈F×

p

A(t) = 0

∑
t∈F×

p

A(t) = −A(−1)

∑
x∈Fp

Φ

(
x

(
1 +

1

t

))
= 0

and ∑
x∈F×

p

Φ

(
x

(
1 +

1

t

))
= −1

thus we are done.

To finish this section, we state a folklore theorem on hypergeometric functions over
finite fields:

Theorem 4.5

Hp

[ 1
2

1
2

1
;λ

]
=

1

1− p

∑
χ∈”F×

p

g(ϕχ)g(ϕχ)g(χ)

g(ε)g(ϕ)g(ϕ)g(ε)
χ(λ)

§5 Algebraic hypergeometric functions

Definition 5.1. Let α = {a1, a2, . . . , an} and β = {b1, b2, . . . , bn}, where a1 ≤ a2 ≤
· · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn. We say α and β interlace if one of the following two
cases hold:

• a1 < b1 < a2 < b2 < · · · < an < bn

• b1 < a1 < b2 < a2 < · · · < bn < an

13
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Theorem 5.2 (Beukers-Heckman, 1975)

The data {α,β} is algebraic if and only if α,β interlace.

Example 5.3

Hp

[
1
3

2
3

1
2

;λ

]
is algebraic, since α = {1

3 ,
2
3} and β = {1, 1} interlace.

Theorem 5.4 (Multiplication formula)

Let m ∈ N. Then ∏
χ∈F×

p χm=ε

g(Aχ)

g(χ)
= −g(Am)A(m−m)

Theorem 5.5 (Special case)

If m = 2, then g(A)g(ϕA) = g(A)g(ϕ)A(4), where ϕ is the quadratic character.

Theorem 5.6

Hp

[ 1
4

3
4

1
2

;λ

]
=

(
1 + ϕ(λ)

2

)[
ϕ(1 +

√
λ) + ϕ(1−

√
λ)
]

where ϕ(x) = x
p−1
2 is the quadratic character, and p ≡ 1 (mod 4).

Proof. Note that Hp collapses to 0 if λ is not a square mod p, due to the 1+ϕ(λ)
2 term.

Otherwise, let λ ̸= 0 be a quadratic residue mod p and η4 be a character of order 4. Then,
we have 1+ϕ(λ)

2 = 1. Before proving the main result, we first need a lemma:

Lemma 5.7 (Double-angle formula)

g(A)g(ϕA) = g(A2)g(ϕ)A(4).

14
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Now, we have

Hp

[ 1
4 ,

3
4

1
2

;λ

]
=

1

p− 1

∑
χ

g(η4χ)g(η4)g(χ)g(ϕχ)

g(η4)g(η4)g(ϕ)
χ(λ)

=
1

p− 1

∑
χ

(
g(χ4)

g(χ)

)(
g(ϕ)

g(ϕχ)

)(
g(χg(ϕχ))

g(ϕ)

)
χ

(
λ

256

)
iterating over χ ∈ {ϕ, ε, η4, η4}

=
1

p− 1

∑
χ

g(χ4)

g(χ2)g(ϕ)
g(χ)g(ϕχ)χ

(
λ

64

)
by the double-angle formula with A = χ

=
1

p− 1

∑
χ

g(χ4)

g(χ2)g(ϕ)
g(χ2)g(ϕ)χ

(
λ

16

)
by the double-angle formula with A = χ

=
1

p− 1

∑
χ

g(χ4)g(χ2)

g(χ2)
χ

(
λ

16

)

=
1

p− 1

∑
χ

g(ϕχ2)g(χ2)

g(ϕ)
χ (λ) by the double-angle formula with A = χ2

=
1

p− 1

∑
χ

∑
a∈Fp\{0,1}

ϕχ2(a)χ2(1− a)χ (λ) write as a Jacobi sum

=
1

p− 1

∑
a∈Fp\{0,1}

ϕ(a)
∑
χ

χ

(
a2λ

(1− a)2

)
swap the order of summation

= ϕ
(
(1 +

√
λ)−1 + (1−

√
λ)−1

)
by evaluating cases where

a2λ

(1− a)2
= 1

= ϕ(1 +
√
λ) + ϕ(1−

√
λ)

which is what we wanted to show.

Example 5.8 (Beukers, Coher, Mellit, Grove)

Hp

[
1
3

2
3

1
2

;λ

]
= Nf (λ)−1, where Nf (λ) is the number of zeros of f(x) = x3+3x2−4λ

over Fp.

Example 5.9 (Grove)

Hp

[
1
6

5
6

1
2

;λ

]
= ϕ( λ

27)(Nf (λ)− 1) where ϕ is the quadratic character. This is basically

immediate from the previous example, since if we add 1
2 (which is the equivalent of

sending χ to ϕ(χ), since ϕ is basically “1
2” in F×

p ) and quotient Z, we get this HG.

Remark. We implicitly define it in / Q, where α = {a1, . . . , an} is / Q if
∏n

i=1(x−e2πiai) ∈
Z[x].

§6 Hypergeometric moments

15
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Example 6.1

The intuition comes from

∫ 1

0

dx√
x(1− x)(1− λx)

= π · 2F1

[ 1
2

1
2

1
;λ

]
.

Remark. Certain Hp values have a relation with the points continuous on cubic curves over

Fp. Goal: count Fp solutions on Ẽ = mod p reduction of E, where p is a good prime (i.e.,
doesn’t make E singular).

|Ẽ(Fp) = 1 +
∑
x∈Fp

(
1 +

(
x(1− x)(1− λx)

p

))
including O, i.e., point at infty

= p+ 1 +
∑
x∈Fp

ϕ(x(1− x)(1− λx))

Definition 6.2. Define ap = −
∑

x∈Fp
ϕ (x(1− x)(1− λx)).

Definition 6.3. Denote Hp(λ) = Hp

[
1
2

1
2

1
;λ

]
.

Definition 6.4. Good reduction refers to the reduced variety having the same properties
as the original, for example, an algebraic curve having the same genus, or a smooth
variety remaining smooth.

Claim 6.5 — ap = Hp

[
1
2

1
2

1
;λ

]
for primes of good reduction.

Proof. Let a = b = 1
2 and c = 1, so

Hp

[ 1
2 ,

1
2

1
;λ

]
=

1

J(ϕ, ϕ)

∑
x∈Fp

ϕ(x(1− x)(1− λx))

= −ϕ(−1)
∑
x∈Fp

ϕ(x(1− x)(1− λx)) = −ϕ(−1)ap

hence ap = Hp

[
1
2

1
2

1
;λ

]
.

Theorem 6.6 (Hasse bound)

For all Hp, we have |Hp(λ)| ≤ 2
√
p, or equivalently,

Hp(λ)√
p ∈ [−2, 2], which is referred

to as the Hasse bound.

What is End(E)? (For “nice” elliptic curves, since it forms an abelian group, End(E) ∼=
Z.)

Most of the time, End(E) ∼= Z.
But sometimes, End(E) ⊋ Z.

16
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Example 6.7

y2 = x3 − x, then the map (x, y) 7→ (−x, iy) gives us back the original curve.

Remark. E has complex multiplication (CM) if End(E) ⊋ Z.

Theorem 6.8 (Sato-Tate, 2011)

Fix Eλ that is not CM . Then,
Hp(λ)√

p ∈ [−2, 2] gives a semicircular distribution as
p → ∞.

Conjecture 6.9 (Sato-Tate for families, 2021). Fix p. Let λ ∈ Fp \ {0, 1} vary in {Eλ}.
Then, what is the distribution of

Hp(λ)√
p ∈ [−2, 2] as λ varies, for sufficiently large p?

(Answer: semicircular.)

Take an “average” of the normalized Hp values. Let m be a fixed positive integer
greater than 1. Consider the hypergeometric moment

1

p

∑
λ∈Fp

(
Hp(λ)√

p

)m

=
1

p
m
2
+1

∑
λ∈Fp

Hp(λ)
m

The expression is interesting (i.e., nontrivial) if m > 1, since for m = 1, it’s basically
orthogonality characters, so it sums to 0 or p− 1.

Theorem 6.10 (Ono-Saad-Saikia, 2021)

Let m be a fixed positive integer. Then,

lim
p→∞

1

p
m
2
+1

∑
λ∈Fp

Hp(λ)
m =

{
0 if m is odd

C(n) if m = 2n for n ∈ N

where C(n) = 1
n+1

(
2n
n

)
.

Proof. We have Hp(λ) = −Hp(
1
λ) where λ ∈ F×

p , so for 2 ∤ m, everything cancels out
nicely.

Theorem 6.11 (Grove)

Let m be a fixed positive integer. Then,

lim
p→∞

1

p
m
2
+1

∑
λ∈Fp

Hp(λ
2)m =

{
0 if m is odd

C(n) if m = 2n for n ∈ N

where C(n) = 1
n+1

(
2n
n

)
.

Proof. We have Hp(λ) = ϕ(λ)Hp(1− λ) for λ ∈ F×
p , so for 2 ∤ m, everything cancels out

nicely.

17
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Theorem 6.12 (Grove)

Let m be a fixed positive integer. Then,

lim
p→∞

1

p
m
2
+1

∑
λ∈Fp

Hp

[ 1
3

2
3

1
;λ

]m
=

{
0 if m is odd

C(n) if m = 2n for n ∈ N

where C(n) = 1
n+1

(
2n
n

)
.

Remark. The high level intuition for this theorem comes from∫
SU(2)

(Tr(X))2n = C(n)

Theorem 6.13 (Ono-Saad-Saikia, 2021)

Let m be a fixed positive integer. Then,

lim
p→∞

1

pm+1

∑
λ∈Fp

Hp

[ 1
2

1
2

1
2

1 1
;λ

]m
=

{
0 if m is odd∑m

i=0(−1)i
(
m
i

)
C(i) if m is even

Remark. Again, the high level intuition for this comes from∫
O(3)

(Tr(X))m =

m∑
i=0

(−1)i
(
m

i

)
C(i)

§7 Finale

Finally, here is an open problem to think about:

Conjecture 7.1. Let m be a fixed positive integer. Then,

lim
p→∞

1

p
m
2
+1

∑
λ∈Fp

Hp

[ 1
6

5
6

1
;λ

]m
=

{
0 if m is odd

C(n) if m = 2n

18
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