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Modal Logic

Jiwu Jang

June 16 – 24, 2023

This is a note on a series of lectures on modal logic, instructed by Pico Gilman, at the
2023 Ross Mathematics Program at Otterbein College.

§1 Propositional Logic

Definition 1.1. P,Q,R are statements (have a truth value), and ¬,∧ are the only
operations. (P → Q is ¬P ∨Q)

§2 Modal Logic

Definition 2.1. Modal logic is a propositional logic with □,♢.

• ¬□¬(P ) = ♢(P ).

• ¬♢¬(P ) = □(P ).

• (¬¬)♢(¬¬) = ¬□¬ = ♢.

Axioms:

• K (distribution axiom) (□(P → Q)) → (□P → □Q)

• N (necessitation rule) P → □P

§3 Temporal Modal Logic

Definition 3.1. • □ = “is always true”

• ¬□¬ = ♢ = “is sometimes true”

Remark. Temporal Modal Logic cannot satisfy the necessitation rule.

§4 Deontic Modal Logic

Definition 4.1. □ϕ = “ϕ is necessary”
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§5 Topological Modal Logic

Definition 5.1. int(Y ) = {x | ∃U ∋ x, U ⊆ Y } = {x | ∃U ∋ x, infU (1Y ) = 1}.

Definition 5.2. X is a set; possible propositions = 2X . τ is a topology on X.
□(Y ) = int(Y ).
□P → □□P .
□(Y )∨□(Z) = “1′′ → [□(Y ∧Z) ̸= “0′′]∨ [Y = “0′′ ∨Z = “0′′] would be the definition

of connectedness.

§6 Poset-Topological Modal Logic

Let L be a poset (X, τ) be a topological space. Our proposition is Lx.
A ∨ B(x) = sup(A(x), B(x)). ¬A(x) = γ(x). (We reverse the poset, by basically

reversing the order of everything) A ∨ ¬A(x) = max(L). □A(x) = supU⊇x(infu∈U A(u)).

Example 6.1 (Cofinite lattice)

Finite and cofinite lattices (union of finite and cofinite gives cofinite, intersection of
finite and cofinite gives finite, . . .) {x ⊆ N | |x| < ∞∨ |N \ x| < ∞}

Definition 6.2. An antichain is a subset of elements where no two distinct elements are
not comparable.

Definition 6.3. For a poset L and X ⊆ L, define

S(X) := {y ∈ L | ∃x ∈ X, y ≤ x}

Exercise 6.4. Prove that S(S(X)) = S(X).

Exercise 6.5. Prove that S(X) ∪ S(X ′) = S(X ∪X ′).

Theorem 6.6

The following three statements are equivalent:

1. Let X ⊆ L, then ∃Y ⊆ X s.t. |Y | < ∞ and S(X) = S(Y ).

2. Let X ⊆ L, then Y ⊆ L s.t. |Y | < ∞ and S(X) = S(Y ).

3. L has no infinite ascending chains and infinite antichains.

Proof. (3) =⇒ (2). For X ⊆ L, let x0 ∈ X. Consider the chain xL > xL−1 > · · · > x0,
where the chain terminates at xL, since there is no infinite ascending chain. Let X ′ =
X \ S({xL}), then we have S(X ′)∪ S({xL}) = S(X), but then there cannot be infinitely
many antichains, so some two must be comparable, hence we are done. ■

(2) =⇒ (1). Let X ⊆ L, and Y ⊆ L, such that S(X) = S(Y ). Then, ∀y ∈ Y ∃x ∈ X
such that y ∈ S(X) ⇐⇒ y ≤ x, hence we are done. ■

(1) =⇒ (3). Let (a1, a2, . . . ) be an ascending chain, then it must be bounded, since
otherwise let X = {ai}. Then ∃Y ⊆ X such that |Y | < ∞ and S(Y ) = S({ai}). ■
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Theorem 6.7

Let L be GC-compact, τL = {S(X) | |X| < ∞∧X ⊆ L}, and {S(Xi)} ⊆ τL. Then,
τL is a topology (not generally true if we drop the GC-compact condition). Showing
that τL is a topology is relatively straightforward:

⋃
S(Xi) = S(

⋃
Xi) = S(Y ),⋂

∋ α =⇒ S(α) ⊆
⋂
S(Xi), and

⋂
S(Xi) = A = S(A).

Let L = 2<ω = {,0, 1, 00, 01, 10, 11, . . . }. Then, τL is not closed under arbitrary unions:
consider X = {0, 10, 110, 1110, . . . }, then S(X) = L \ {11 . . . 1︸ ︷︷ ︸

k

| k ≥ 0}.

The poset must have a maximal length element, but then we can construct by taking
union a longer element, so τL is not closed under arbitrary union, and we are done.

Claim 6.8 — □f is continuous ∀f ∈ LX , assuming that L is GC-compact.

Proof. It suffices to show that Y = (□f)−1(S(a)) is closed, since f is continuous iff the
pre-image of any closed set is closed.

Let x ∈ Y , then we want to show that ∃U ∋ x such that U ∪ Y = ∅. Suppose FTSOC
that ∀W ∋ x, W ∩ Y ̸= ∅.
Then, ∃w ∈ W ∩ Y such that □f(w) ∈ S(a), hence

a ≥ □f(w) = sup
V ∋w

( inf
τ∈V

f(τ)) ≥ inf
τ∈W

f(τ)

Thus,
a ≥ sup

W |W∩Y ̸=∅
( inf
τ∈W

f(τ)) = □f(x)

But then □f−1(a) ∋ x, contradiction.

§7 Modal Logic

□ = “there is a proof of X”
□□P → □P .
□P ∧□P ↔ □(P ∧Q).

Exercise 7.1. Prove that P → □P does not necessarily imply P → ♢P .

Proof. Find a “real-world” (i.e., in a concrete system) counterexample.
We have P → □P ⇐⇒ ¬P ∨□P .
For P → ♢P , it suffices to show P → ¬□¬P .

P → ¬□¬P
⇐⇒ ¬P ∨ ¬□¬P
⇐⇒ ¬(P ∧□¬P )

If you add something like □♢P = ♢□P , then ¬□P = □¬P , like commutativity of two
operations, which would probably lead to degenerate trivial cases.
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Example 7.2

f : 2X → 2Y or like f : 2X → {0, 1}Y .
For example, f(a) = {1, 2, 3}, where a 7→ {1 → 1, 2 → 1, 3 → 1, 4 → 0, 5 →

0, . . . } = 1{1,2,3} which is the characteristic function of a set (returning whether an
element is in the set).
There’s also fuzzy sets, f : 2X → [0, 1]Y .

Example 7.3

L is a poset; f : 2X → (L)X .

Exercise 7.4. Is it the case that K =⇒ [♢(P → Q)] → [♢P → ♢Q]?

§8 Poset Modal Logic

L is a poset.
Define ∧ as the “sup” of A and B.
Define ¬ as the “order reversing thingy”.
Define □P as “the next element in the poset after P”.
One example is a tree going upwards, where stuff upwards is “stronger” in some sense.
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