Modal Logic

Jiwu Jang

June 16 - 24, 2023

This is a note on a series of lectures on modal logic, instructed by Fico Gilman, at the 2023 Ross Mathematics Program at Otterbein College.

§1 Propositional Logic

Definition 1.1. P, Q, R are statements (have a truth value), and \neg, \wedge are the only operations. $(P \rightarrow Q$ is $\neg P \vee Q)$

§2 Modal Logic

Definition 2.1. Modal logic is a propositional logic with \square, \diamond.

- $\neg \square \neg(P)=\diamond(P)$.
- $\neg \diamond \neg(P)=\square(P)$.
- $(\neg \neg) \diamond(\neg \neg)=\neg \square \neg=\diamond$.

Axioms:

- K (distribution axiom) $(\square(P \rightarrow Q)) \rightarrow(\square P \rightarrow \square Q)$
- N (necessitation rule) $P \rightarrow \square P$

§3 Temporal Modal Logic

Definition 3.1. $\square=$ "is always true"

- $\neg \square \neg=\diamond=$ "is sometimes true"

Remark. Temporal Modal Logic cannot satisfy the necessitation rule.

§4 Deontic Modal Logic

Definition 4.1. \qquad $\square \phi=" \phi$ is necessary"

§5 Topological Modal Logic

Definition 5.1. int $(Y)=\{x \mid \exists U \ni x, U \subseteq Y\}=\left\{x \mid \exists U \ni x, \inf _{U}\left(\mathbb{1}_{Y}\right)=1\right\}$.
Definition 5.2. X is a set; possible propositions $=2^{X} . \tau$ is a topology on X.
$\square(Y)=\operatorname{int}(Y)$.
$\square P \rightarrow \square \square P$.
$\square(Y) \vee \square(Z)=" 1$ " $\rightarrow[\square(Y \wedge Z) \neq " 0 \prime] \vee[Y=" 0$ " $\vee Z=" 0$ " $]$ would be the definition of connectedness.

§6 Poset-Topological Modal Logic

Let L be a poset (X, τ) be a topological space. Our proposition is L^{x}.
$A \vee B(x)=\sup (A(x), B(x)) . \neg A(x)=\gamma(x)$. (We reverse the poset, by basically reversing the order of everything) $A \vee \neg A(x)=\max (L) . \square A(x)=\sup _{U \supseteq x}\left(\inf _{u \in U} A(u)\right)$.

Example 6.1 (Cofinite lattice)

Finite and cofinite lattices (union of finite and cofinite gives cofinite, intersection of finite and cofinite gives finite, ...) $\{x \subseteq \mathbb{N}||x|<\infty \vee| \mathbb{N} \backslash x \mid<\infty\}$

Definition 6.2. An antichain is a subset of elements where no two distinct elements are not comparable.

Definition 6.3. For a poset L and $X \subseteq L$, define

$$
S(X):=\{y \in L \mid \exists x \in X, y \leq x\}
$$

Exercise 6.4. Prove that $S(S(X))=S(X)$.
Exercise 6.5. Prove that $S(X) \cup S\left(X^{\prime}\right)=S\left(X \cup X^{\prime}\right)$.

Theorem 6.6

The following three statements are equivalent:

1. Let $X \subseteq L$, then $\exists Y \subseteq X$ s.t. $|Y|<\infty$ and $S(X)=S(Y)$.
2. Let $X \subseteq L$, then $Y \subseteq L$ s.t. $|Y|<\infty$ and $S(X)=S(Y)$.
3. L has no infinite ascending chains and infinite antichains.

Proof. (3) \Longrightarrow (2). For $X \subseteq L$, let $x_{0} \in X$. Consider the chain $x_{L}>x_{L-1}>\cdots>x_{0}$, where the chain terminates at x_{L}, since there is no infinite ascending chain. Let $X^{\prime}=$ $X \backslash S\left(\left\{x_{L}\right\}\right)$, then we have $S\left(X^{\prime}\right) \cup S\left(\left\{x_{L}\right\}\right)=S(X)$, but then there cannot be infinitely many antichains, so some two must be comparable, hence we are done.
(2) \Longrightarrow (1). Let $X \subseteq L$, and $Y \subseteq L$, such that $S(X)=S(Y)$. Then, $\forall y \in Y \exists x \in X$ such that $y \in S(X) \Longleftrightarrow y \leq x$, hence we are done.
(1) \Longrightarrow (3). Let $\left(a_{1}, a_{2}, \ldots\right)$ be an ascending chain, then it must be bounded, since otherwise let $X=\left\{a_{i}\right\}$. Then $\exists Y \subseteq X$ such that $|Y|<\infty$ and $S(Y)=S\left(\left\{a_{i}\right\}\right)$.

Theorem 6.7

Let L be GC-compact, $\tau_{L}=\{S(X)| | X \mid<\infty \wedge X \subseteq L\}$, and $\left\{S\left(X_{i}\right)\right\} \subseteq \tau_{L}$. Then, τ_{L} is a topology (not generally true if we drop the GC-compact condition). Showing that τ_{L} is a topology is relatively straightforward: $\bigcup S\left(X_{i}\right)=S\left(\bigcup X_{i}\right)=S(Y)$, $\bigcap \ni \alpha \Longrightarrow S(\alpha) \subseteq \bigcap S\left(X_{i}\right)$, and $\bigcap S\left(X_{i}\right)=A=S(A)$.

Let $L=2^{<\omega}=\{, 0,1,00,01,10,11, \ldots\}$. Then, τ_{L} is not closed under arbitrary unions: consider $X=\{0,10,110,1110, \ldots\}$, then $S(X)=L \backslash\{\underbrace{11 \ldots 1}_{k} \mid k \geq 0\}$.

The poset must have a maximal length element, but then we can construct by taking union a longer element, so τ_{L} is not closed under arbitrary union, and we are done.

Claim $6.8-\square f$ is continuous $\forall f \in L^{X}$, assuming that L is GC-compact.

Proof. It suffices to show that $Y=(\square f)^{-1}(S(a))$ is closed, since f is continuous iff the pre-image of any closed set is closed.

Let $x \in Y$, then we want to show that $\exists U \ni x$ such that $U \cup Y=\emptyset$. Suppose FTSOC that $\forall W \ni x, W \cap Y \neq \emptyset$.

Then, $\exists w \in W \cap Y$ such that $\square f(w) \in S(a)$, hence

$$
a \geq \square f(w)=\sup _{V \ni w}\left(\inf _{\tau \in V} f(\tau)\right) \geq \inf _{\tau \in W} f(\tau)
$$

Thus,

$$
a \geq \sup _{W \mid W \cap Y \neq \emptyset}\left(\inf _{\tau \in W} f(\tau)\right)=\square f(x)
$$

But then $\square f^{-1}(a) \ni x$, contradiction.

§7 Modal Logic

$\square=$ "there is a proof of X "
$\square \square P \rightarrow \square P$.
$\square P \wedge \square P \leftrightarrow \square(P \wedge Q)$.
Exercise 7.1. Prove that $P \rightarrow \square P$ does not necessarily imply $P \rightarrow \diamond P$.
Proof. Find a "real-world" (i.e., in a concrete system) counterexample.
We have $P \rightarrow \square P \Longleftrightarrow \neg P \vee \square P$.
For $P \rightarrow \diamond P$, it suffices to show $P \rightarrow \neg \square \neg P$.

$$
\begin{aligned}
& P \rightarrow \neg \square \neg P \\
\Longleftrightarrow & \neg P \vee \neg \square \neg P \\
\Longleftrightarrow & \neg(P \wedge \square \neg P)
\end{aligned}
$$

If you add something like $\square \diamond P=\diamond \square P$, then $\neg \square P=\square \neg P$, like commutativity of two operations, which would probably lead to degenerate trivial cases.

Example 7.2
$f: 2^{X} \rightarrow 2^{Y}$ or like $f: 2^{X} \rightarrow\{0,1\}^{Y}$.
For example, $f(a)=\{1,2,3\}$, where $a \mapsto\{1 \rightarrow 1,2 \rightarrow 1,3 \rightarrow 1,4 \rightarrow 0,5 \rightarrow$ $0, \ldots\}=\mathbb{1}_{\{1,2,3\}}$ which is the characteristic function of a set (returning whether an element is in the set).

There's also fuzzy sets, $f: 2^{X} \rightarrow[0,1]^{Y}$.

Example 7.3

L is a poset; $f: 2^{X} \rightarrow(L)^{X}$.

Exercise 7.4. Is it the case that $K \Longrightarrow[\diamond(P \rightarrow Q)] \rightarrow[\diamond P \rightarrow \diamond Q]$?

§8 Poset Modal Logic

L is a poset.
Define \wedge as the "sup" of A and B.
Define \neg as the "order reversing thingy".
Define $\square P$ as "the next element in the poset after P".
One example is a tree going upwards, where stuff upwards is "stronger" in some sense.

